
Distributed Real-Time Processing of Multimedia

Data with the P2G Framework

Paul B. Beskow, Håvard Espeland, Håkon K. Stensland, Preben N. Olsen, Ståle Kristoffersen

Espen A. Kristiansen, Carsten Griwodz, Pål Halvorsen
Simula Research Laboratory, Norway and IFI, University of Oslo, Norway

P2G is a framework designed to integrate concepts from modern batch processing frameworks into the world

of real-time multimedia processing, where we seek to scale transparently with the available resources. P2G

consists of a compiler and run-time that analyzes dependencies dynamically and merges or splits kernel

instances based on resouce availability and performance monitoring.

K-MEANS CLUSTERING MOTION JPEG

K-means clustering is an iterative algorithm for

cluster analysis, which aims to partition n datapoints

into k clusters in which each datapoint belongs to

the cluster with the nearest mean.

Motion JPEG (MJPEG) is a video coding format

using a sequence of separately compressed JPEG

images.

The k-means workload was run on a generated

dataset of n=2000 with k=100. The algorithm was

not run until convergence, but stopped after 10

iterations, as the point of convergence is not

deterministic.

The MJPEG workload was run on the standard test

sequence Foreman encoded in CIF resolution. We

limited the workload to process 50 frames of video.

A single-thread native implementation completed in

~30 sec on the Opteron and ~19 sec on the Core i7.

Kernel Instances Dispatch Time Kernel Time

init 1 69.00 zs 18.00 zs

read/splitYUV 51 35.50 zs 1641.57 zs

yDCT 80784 3.07 zs 170.30 zs

uDCT 20196 3.14 zs 170.24 zs

vDCT 20196 3.15 zs 170.58 zs

VLC/write 51 3.09 zs 2160.71 zs

Kernel Instances Dispatch Time Kernel Time

init 1 58.00 zs 9829.00 zs

assign 2024251 4.07 zs 6.95 zs

refine 1000 3.21 zs 92.91 zs

print 11 1.09 zs 379.36 zs

Evaluation Evaluation

Microbenchmark Microbenchmark

Workload description Workload description

The init kernel generates n datapoints, selecting k
initial centroids. This results in n assign kernel
instances per age, each fetching a single datapoint

and the set of centroids for that age. It then calculates

which of these centroids the point is closest to and

stores the point in the cluster of that centroid (for the

given age). k refine kernels are then dispatched (per
age), each calculating the new mean of that cluster of

datapoints, and then stores the result in the Centroids

field. This process is then repeated until the algorithm

converges.

One read/splitYUV kernel instance is dispatched per

frame read. It splits the image into its Y, U and V

components and stores this to its corresponding

fields. Then one kernel per macro block is dispatced,

with CIF resolution (352*288) this equals 1584 yDCT
kernels, 396 uDCT and vDCT kernels. These kernels
then calculate the discreet cosine transform and do

quantization, storing their results to their

corresponding fields. Then one VLC/write kernel per
frame is dispatched to perform variable length coding

and writing the buffer to disk.

KERNEL LANGUAGE

C++ Equivalent

P2G Kernel language Example

fetch <field F> (age A) [index X] ... [index Z]

Extract a slice of data from a field

store <field F> (age A) [index X] ... [index Z]

Store a slice of data to a field

void print(int * data, int num)
{
 for(int i = 0; i < num; + + i)
 std::cout < < data[i] < < " ";
 std::cout < < std::endl;
}

int main()
{
 int data[] = { 10, 11, 12, 13, 14 };
 int num = (sizeof data/ sizeof *data);
 print(data, num);
 while(true)
 {
 for(int i = 0; i < num; + + i)
 {
 data[i] *= 2;
 }
 print(data, num);
 for(int i = 0; i < num; + + i)
 {
 data[i] + = 5;
 }
 print(data, num);
 }
 return 0;
}

P2G ARCHITECTURE

Distributed Real-Time Processing of Multimedia Data with
the P2G Framework

Paul B. Beskow*, Håvard Espeland*, Håkon K. Stensland*, Preben N. Olsen*,
Ståle Kristoffersen*, Espen A. Kristiansen*, Carsten Griwodz, Pål Halvorsen

*Student author

Simula Research Laboratory, Norway
Department of Informatics, University of Oslo, Norway

{paulbb, haavares, haakonks, prebenno, staalebk, griff, paalh}@ifi.uio.no

1. INTRODUCTION

As the number of multimedia services grows, so does the
computational demands on multimedia data processing. New
multi-core hardware architectures provide the required re-
sources, however, parallel, distributed applications are much
harder to write than sequential programs. Large process-
ing frameworks like Google’s MapReduce [1] and Microsoft’s
Dryad [2] are steps in the right direction, but they are tar-
geted towards batch processing. As such, we present P2G,
which is a framework designed to integrate concepts from
modern batch processing frameworks into the world of real-
time multimedia processing. With P2G we seek to scale
transparently with the available resources (following the cloud
computing paradigm) and to support heterogenous comput-
ing resources, such as GPU processing cores. The idea is
to encourage the application developer to express as fine
a granularity as possible along two axes, data and func-
tional parallelism, where many of the existing systems sac-
rifice flexibility in one axis to accommodate for the other,
e.g., MapReduce has no flexibility in the functional domain,
but allows for fine-grained parallelism in the data domain.
In P2G, functional blocks are formulated as kernels that
operate on slices of multi-dimensional fields. As such, the
fields, used to storing of the multimedia data, are used to ex-
press data decomposition. The write-once semantics of the
fields provide the needed boundaries and barriers for func-
tional decomposition to exist in our run-time and ensures
deterministic output. P2G has intrinsic support for dead-
lines, and the compiler and run-time analyze dependencies
dynamically and merge or split kernels based on resource
availability and performance monitoring. We have imple-
mented a prototype of a P2G execution node, with MJPEG
as a primary workload. As such, we intend to demonstrate
an operating execution node of P2G at the conference. We
will also present results from running tests on our execu-
tion node using MJPEG and K -means, where we are able
to show that P2G scales with the number of cores available.

2. ARCHITECTURE

As shown in figure 1, P2G consists of a master node and
an arbitrary number of execution nodes. Each execution
node reports its local topology (i.e., multi-core, GPU, etc)
to the master node, which combines this information to form
a global topology of available resources. As such, the global

Figure 1: Overview of nodes in the P2G system.

topology can change during run-time as execution nodes
can be dynamically added and removed to accommodate
for changes in the global load.

As the master node receives workloads, it use its high-
level scheduler to determine which execution nodes to del-
egate partial or complete parts of the workload to. This
process can be achieved in a number of ways. However, as a
workload in P2G forms an implict dependency graph based
on its store and fetch operations to virtual fields, the high-
level scheduler can utilize graph partitioning algorithms, or
similar, to map such an implicit dependency graph to the
global topology. The utilization of available resources is thus
maximized.

When an implicit graph is split across multiple execution
nodes, communication is achieved through an event-based,
distributed publish-subscribe model. For every input, these
subscriptions are deterministically derived from the code
and the high-level schedulers partitioning decisions. The
subscriptions also make it possible to establish direct com-
munication links between the interacting execution nodes.

P2G uses a low-level scheduler at each execution node
to maximize the local scheduling decisions, i.e., the low-
level scheduler can decide to combine functional and data
decomposition to minimize overhead. During run-time the
master node will collect statistics on resource usage from
all execution nodes, which all run an instrumentation dae-
mon to acquire this information. The master node can then
combine this run-time instrumentation data with the im-
plicit dependency graph derived from the source code and
the global topology to make continuous refinements to the
high-level scheduling decisions. As such, P2G relies on its
combincation of a high-level scheduler, low-level schedulers,
instrumentation data and the global topology to make best
use of the performance of several heterogeneous cores in a
distributed system.

As seen in figure 2, P2G provides a kernel language for
the programmer to write their application in, which they do

(a) Kernel and virtual field definitions

����

����
���������	

A

���AB
���������	

�CD

EF���
���������	

�

���F�������B� �������������

���F����������D���������������D�

����	

�C��������

�������E

(b) Implicit dependency graph

��

��

��

��

��

��

��

��

��

��

���

��	A	BCDEF��

��

���

����	ABCDEF��

��

���

�������

�������

�������

�������

�������

���

���FF��CDEF��

��

������

��� ��� ��A

������

��� ��� ��A

��� ���

���

���

��A

�����EE�

�BE��

��BD

DEF�!��F

(c) Kernel and field instances

Figure 2: P2G programming model

by writing isolated, sequential pieces of code called kernels.
Kernels operate on slices of fields through fetch and store

operations and have native code embedded within them. In
the model we encourage the programmer to specify the in-
heret parallelism in their application in as fine a granularity
as possible in the domains of functional and data decompo-
sition, without needing to sacrifice the one for the other.
The multi-dimensional fields offer a natural way to ex-

press multimedia data, and provide a direct way for ker-
nels to fetch slices of data in as fine granularity as possible.
The write-once semantics of the fields provide determinis-
tic output, though not necessarily deterministic execution
of individual kernels. Given write-once semantics, iteration
is supported in P2G by introducing the concept of aging,
as seen in figure 2(b), where storing and fetching to the
same field position, at different ages, makes it possible to
form loops. The write-once semantics also provide natural
boundaries and barriers for functional decomposition, as the
low-level scheduler can analyze the dependencies of a kernel
instance to determine if it is ready for execution. Further-
more, the compiler and the run-time, can analyze dependen-
cies dynamically and merge or split kernels based on resource
availability and performance monitoring.
Given a workload specified using the P2G kernel language,

P2G is designed to compile the source code for a number of
heterogenous architectures, though it currently only does
so for the x86 architecture. P2G can then distribute this
workload across the resources available to it.
At the time of writing, P2G consists of what we call an

execution node, which is capable of executing entire work-
loads on a single x86 multi-core node. As such, the high-level
scheduler and distribution mechanisms are not yet imple-
mented, though the work is well under way.

3. WORKLOAD

We have implemented a few simple workloads used in mul-
timedia processing to test the prototype implementation,
here we will focus on our Motion JPEG implementation.

Figure 3: Overview of the P2G MJPEG encoding

process

The read + splitYUV kernel reads the YUV-input video
and stores the data in three fields, yInput, uInput, and vIn-

put. The read loop ends when the kernel stops storing to
the next age, e.g., at the end of the file. In our scenario,
three YUV components can be processed independently of
each other and this property is exploited by creating three
kernels, yDCT, uDCT and vDCT, one for each component.
From figure 3, we see that the respective DCT kernels are
dependent on one of these fields.

The encoding process of MJPEG comprises splitting the
video frames into 8x8 macro-blocks. For example, given the
CIF resolution of 352x288 pixels per frame used in our tests,
this generates 1584 macro-blocks of Y (luminance) data,
each with 64 pixel values. This makes it possible to cre-
ate 1584 instances per age of the DCT kernel transforming
luminance. The 4:2:2 chroma sub-sampling yields 396 kernel
instances from both the U and V (chroma) data. Each of
these kernel instances stores the DCT’ed macro-block into
global result fields yResult, uResult and vResult. Finally, the
VLC + write kernel does variable length coding and store
the MJPEG bit-stream to disk.

4. POSTER & DEMO

In this poster/demo, we will explain and discuss the P2G
ideas for multimedia processing with deadlines. Addition-
ally, we accompany the poster with a demo of several well
known multimedia workloads and show the entire applica-
tion development and processing pipeline, i.e, the code in
kernel language, the compilation with parallel code genera-
tion and the processing automatically distributing the mul-
timedia load to the available processing cores.

5. REFERENCES

[1] Dean, J., and Ghemawat, S. Mapreduce: simplified
data processing on large clusters. In Proc. of USENIX

OSDI (2004), pp. 10–10.

[2] Isard, M., Budiu, M., Yu, Y., Birrell, A., and

Fetterly, D. Dryad: distributed data-parallel
programs from sequential building blocks. In Proc. of

ACM EuroSys (New York, NY, USA, 2007), ACM,
pp. 59–72.

