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Multicore hardware is now commonplace in most com-
puter systems, ranging from powerful servers to desktop en-
vironments and even embedded systems. NUMA technol-
ogy makes it possible to use a large number of processing
cores at the cost of a complex hierarchy of caches and buses.
Nevertheless, current systems and applications are unable
to take advantage of these new architectures: performance
stalls, even though the number of cores keeps increasing.

The main obstacle hampering the scalability of multi-
threaded applications over a large number of cores is the
cost of executing blocks of code that manipulate shared data
in mutual exclusion. These blocks of code are protected by
locks and called critical sections. When the number of cores
is high, critical sections often cause major bottlenecks, for
two main reasons. First, the cost of acquiring a lock can be
prohibitive when a large number of threads try to enter a
critical section simultaneously, because of the resulting load
on the memory bus. Second, executing the code of critical
sections can be costly because critical sections often access
shared variables that have most recently been accessed by
another core: this data must therefore be transfered from the
other core’s cache to the local core’s cache. The resulting
overhead is often the cause of bottlenecks on modern archi-
tectures in which communication between a large number of
cores is handled by costly cache coherency algorithms.

We propose a new locking technique, Remote Core Lock-
ing (RCL), which aims to improve the performance of mul-
tithreaded applications on multicore architectures. The gen-
eral idea of RCL is to replace, in legacy applications, some
performance-critical lock acquisitions by optimized remote
procedure calls to a dedicated “server” core. RCL has two
advantages. First, by replacing a lock acquisition by a fast
transfer of control, implemented with a single exchange of a
cache line between the client and the server, RCL does not
suffer from the performance collapse observed with regu-
lar locks when a large number of threads try to acquire the
same lock simultaneously. Second, since all critical sections
are executed on the server core, shared variables accessed by
critical sections remain in the server core’s cache: no costly
transfer of shared data between cores is needed.

Related work Several approaches have tried to reduce the
cost of lock acquisitions under high contention. First, vari-

ous types of locks that remain efficient even when contention
is high have been proposed [Bacon 1998, Johnson 2010,
Scott 2001]. However, these solutions do not take data lo-
cality into account: shared data still needs to be transfered
between cores when critical sections are executed. Other au-
thors have proposed to reduce the use of locks by identifying
common locking patterns (readers-writer pattern, read con-
current update [Guniguntala 2008]). These techniques limit
the use of locks in certain cases without completely avoiding
them: they are therefore complementary to our approach. Fi-
nally, algorithms avoiding locks completely have been pro-
posed [Herlihy 2008, Michael 1996], but their use is limited
to very restricted cases: therefore, improving locking mech-
anisms on multicore architectures remains fundamental.

Other work has focused on limiting the cost of transfer-
ing shared data between cores. Several experimental oper-
ating systems optimized for multicore architectures repli-
cate shared data structures on each core to avoid data trans-
fers [Baumann 2009a, Wickizer 2008]. Albeit efficient, these
solutions require a complete overhaul of operating systems
and applications. It has also been proposed to avoid re-
lying on cache coherency algorithms to transfer data be-
tween cores by using message-passing techniques exclu-
sively [Baumann 2009b]. However, this solution also re-
quires major code rewrites and is more suited to the still
uncommon cache-incoherent architectures.

Contributions In the context of this preliminary work, we
propose three following contributions: (1) an efficient im-
plementation of RCL, (2) a methodology to replace classical
lock acquisitions with RCL, and (3) a first set of evaluations
of RCL.

An efficient implementation of RCL. Each client com-
municates with the server using a single “synchronization”
cache line. To execute a critical section, a client writes into
the two first words of this cache line: (i) the address of the
code of the critical section and (ii) the address of a data struc-
ture containing the local variables that are read and written
by the critical section (a.k.a., the “context”). It then actively
waits for the server to set the address of the code to NULL,
which means that the critical section has been executed. The
server checks each synchronization cache line in a loop, un-
til it finds a non-NULL code address. When such an address is
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Figure 1. Latency of RCL relative to classical spinlocks and
to the state-of-the-art MCS spinlock. A low delay between
critical sections (x-axis) means that contention is high.

found, the server uses it as well as the address of the context
to execute the critical section. It then resets the address of the
code to NULL. This implementation is efficient for two rea-
sons : first, its use of active waiting allows for high reactivity,
and second, using one synchronization variable per client in-
stead of a single global synchronization variable avoids over-
loading the data bus when a lot of threads try to acquire a
lock concurrently.

A methodology to replace classical lock acquisitions with

RCL. Since the code and context of critical sections have
to be isolated in order to use RCL, using a single pair of
lock/unlock functions is not sufficient. However, a classical
lock can be replaced with RCL using an algorithm that can
either be used manually by a developer or implemented in a
compiler to replace any lock with RCL automatically.

A first set of evaluations of RCL. First, measurements with
a custom microbenchmark show that RCL is more efficient
than both classical spinlocks and than the state-of-the-art
MCS spinlock when contention is high, as shown on Figure
1. If five cache lines or more are accessed in critical sections,
RCL is more efficient than spinlocks even when contention
is low. Second, using RCL in the Raytrace application from
the SPLASH-2 benchmark suite increases performance up to
70% and scalability up to 400% relative to pthread locks.
Finally, using RCL in the memcached cache server increases
performance up to 70%.

RCL is a novel way of managing mutual exclusion in
multithreaded programs : not only does it reduce the time
needed to acquire a lock when contention is high, it also ex-
ecutes the code of critical sections faster thanks to improved

data locality. Experiments with a microbenchmark show that
when enough shared data is accessed in critical sections,
RCL is always more efficient than state-of-the-art spinlocks.
Preliminary experiments with macrobenchmarks show the
usefulness of RCL in real-world applications. Future work
will consist in writing tools allowing to locate locks that can
be efficiently replaced by RCL, in order to provide a com-
prehensive solution to improve the performance of legacy
applications on multicore architectures.
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