A Scaling Analysis of Linux I/O Performance

Yannis Klonatos, Manolis Marazakis, and Angelos Bilas

Foundation for Research and Technology - Hellas (FORTH)
Institute of Computer Science (ICS)
100 N. Plastira Av., Vassilika Vouton, Heraklion, GR-700Gdeece
{klonatos, maraz, bilggics.forth.gr

I. INTRODUCTION processors running at 2.26 GHz, with two hardware threads

The widespread availability of multicore processors iR€' core, 12 GB of DDR-IIl DRAM, and 24 32-GB enterprise-
server configurations with aggressive 1/0 resources (1/@- codrade Intel X25-E SLC NAND-Flash SSDs, connected to four
trollers along with multiple storage devices, such as solidS! MegaSAS 9260 storage controllers. The SSDs are orga-
state drives) is very promising for increasing levels of I/@ized in @ RAID-O configuration using the defauifl Linux
performance. However, in this work, we raise concerns abdifiver, with a chunk-size of 64KB. The Linux distribution
the actual scalability of /O performance observed in cureinstalled is CentOS, v.5.5, with version 2.6.37 of the masl
server configurations. We provide experimental evidence oianilla’) kemel. We select this specific kernel because i
scalability issues, using the latest stable Linux kernkdase Includes numerous recent scalability related patches. ¥ée u
(v.2.6.37). We identify scaling limitations based on esiga WO filesystems, XFS and EXT4 for our experiments.
measurements and analysis of overheads, mostly lock conFOr our evaluation, we use a modified version of the
tention, using a synthetic workload, which consists of basfSmark [3] benchmark. fsmark is widely used by Linux kernel
filesystem tasks and employs a high degree of 1/0 concurren@§velopers because it issues low-level filesystem-intensi

Starting with a fairly common system configuration as gPerations, a property that makes it suitable for studying
baseline, we find that for several cases 1/0 performance dd#@system scalability. The original version of the benchina
not scale adequately with the number of available hardwdapEevides support for open, write, read, unlink and fsync
threads, for a variety of filesystem operations. Moreoves, wyStem calls; we have added support for create, seek and
observe that performance may actually deteriorate wherem&fat system calls. We have also modified the benchmark to
CPU cores become available. We attempt to mitigate ovéPPOrt operations per second for each system call, instéad o
heads, as identified in our analysis, with targeted tunirig, S @verage execution times the original version reported.&fior
significant scaling limitations remain, motivating a el re- OUr €xperiments we use 128 application threads, each one

examination of the entire 1/O path in the Linux kernel. executing operations on 128 private files. Each file contains
512KB of data. Finally, we vary the number of CPU threads
Il. RELATED WORK in the range from 1 to 16.

Scalability in multicore environments, including filesgst ~ We collect lock contention statistics using the lostat [4]
performance, is nowadays a hot topic. Extensive analysis afechanism provided by recent Linux kernels. Lostat re-
experimentation is currently being performed by the LinuRorts for each lock: i. It's average contention (how manyem
kernel developers themselves, as evident by numerous m#ireads failed to acquire the lock), and ii. The total waitei
threads in the Linux Kernel Mailing List. An important resul associated with it. We use the aforementioned information t
of this ongoing debate has been the introduction in modéd@eate contention bottlenecks.
kernels of the Read-Copy-Update (RCU) [1] mechanism. The
most recent analysis of Linux Scalability is to our knowl-
edge [2]. However, in this publication the authors do not: We make our experimental analysis in three parts. First, we
1) Examine the scalability of commonly deployed filesystemBresent scalability issues with the XFS filesystem running o
such as XFS and EXT4, 2) Consider block-level 1/0, as thdgp of a ramdisk. We believe it is a fairly common system
performed all their storage-related experiments udimgfs, ~configuration to use as a baseline, given the performance gap
which operates entirely in the DRAM-based buffer-cacher Ofetween DRAM and SSDs. However, since modern server
work focuses on these two specific aspects, presentingefurtBystems can not always rely on DRAM-based caches to

IV. EXPERIMENTAL RESULTS

scalability issues in the common 1/O path. achieve the highest performance possible, we then present
our scalability concerns using 24SSDs, which provide high
IIl. EXPERIMENTAL METHODOLOGY throughput and IOPS performance, resulting in the block-

We perform our evaluation on a x86-based Linux servedgvices never being the performance bottleneck. Finalg, w
consisting of the following components: a dual-socket Tyashow that our observations also hold when using another
S7025 motherboard with two 4-core Intel Xeon 5520 64-bftlesystem like EXT4, instead of XFS.

12810000,

280000, 340000, 100000;
11529006| 252000 3060001 Y 90000
10248000] 224000 272000 80000
8967000] 196000{ 238000{ 70000
g 7686000 {3 168000 3 204000 g o000
5 6405000] 5 140000{ 5 170000{ % 50000
& 5124000] & 112000/ & 136000{ ; S 40000
3843000| | —— RAMDISK_SHAREDDIR_DEFAULTLOG 84000] 102000] 30000]
25620001 | LoD S PRIVATEDIR LARGELOG | S69%0] 68000, 20000/
1281000] 24 SSDs 28000{ 34000{ 1000
12545678 910111213141516 O T30S 678 010112 131al516 O T30S 676 0 10i12131l516 O T3 Y Es 7 01615 Tals16
PUs #CPUs #CPUs #CPUs
(a) Open (b) Write (c) Read (d) Unlink

Fig. 1. Operations per second for the open, write, read afidkusystem calls, for varying number of cores. We run founfigurations: i) Using ramdisk with
all threads operating on the same directory (RAMDISK-SHARHER-DEFAULTLOG), ii) Using ramdisk with each threads oping on its own directory
(RAMDISK-PRIVATEDIR-DEFAULTLOG), iii) Using ramdisk wih each thread operating on its own directory and 2GB log €abtof the default 128MB,
RAMDISK-PRIVATEDIR-LARGELOG) and, finally iv) Using 24 SSD

To begin with, for the open system call using the ramdisig, respectively), while after this point the request queuwsk lo
we observe the same behavior for all ramdisk configuratioris.the main performance bottleneck. This is important, sinc
As shown in Figure 1, performance is first increased whemasolving the request queue contention point will result in
moving from 1 to 2 cores, however it then begins to drop as welping both ramdisk and 1/0 subsystems found in commonly
further increase the available CPU count. The main corgentifound in Linux server environments.
point is the request queue lock, and the wait time is inciéase Finally, we wanted to observe what happens when using
significantly (up to 800%) when moving to a higher numbeanother filesystem, rather that the XFS used so far. For this
of available cores. The directory lock (dlock), used in pathurpose, we run again our benchmark with the EXT4 filesys-
resolution, exhibits the same behaviour when moving to motem. We notice, that although EXT4 achieves significantg le
than 4 cores. performance compared to XFS for all systems calls (esggcial

Furthermore, for the read and writes system calls usirigr writes), the most significant observation is that EXT4
the ramdisk, we observe that there is high wait time for thexhibits the same contention behaviour for the same locks as
zone lock. This lock is responsible for holding the buffeXFS. This is important, since it reveals that if these cotiters
cache radix tree organization consistent, when it is aecessire solved or mitigated, both filesystems (and most probably
through multiple threads. Although we notice that the waitthers as well) will significantly benefit.
time for this thread is not decreased when we operate on
different directories instead of a single one (RAMDISK- . . . L
SHAREDDIR-DEFAULTLOG vs RAMDISK-PRIVATEDIR- I—_|aV|ng collected experlmentgl ewd_ence of 1/0 scaling lim-
DEFAULTLOG), we notice that this time is significantly'tat'ons on moderr_1 server con_flguratlons, as presentedrso fa
reduced when using the larger log option (RAMDISK-Our c_urrent work aims i _touchl_ng sever_al Iayer_s along the I/
PRIVATEDIR-LARGELOG). path in the Linux kernel, including caching for filesystentala

Then, for the unlink system call, we observe high corend metadata, and efficient submission and scheduling of 1/0

tention (>90% of the threads are continuously waiting) foFequests. We are also using more complex benchmarks to em-

the superblock lock employed by XFS, when using a shar bate server I/O workloads, operating at high 1/0O concuryen

directory. We argue this is due to the fact that the supekblc;fe\/e'& With the rapidly growing gap between processor and

is updated in each unlink, causing the threads to be StAQbsubsyster:_peln;ormar;](_:e,_we eé(pect Ihls re}search (hlgéctl
chronized at this point. When moving to different directsi 0 become critical Tor achieving adequale pertormancelseve

XFS spreads out the directories throughout the SSD addréc%%data-lntenswe application workloads.

space, in partitions called allocation groups, and usesglesi ACKNOWLEDGMENTS

superblock for each of them. Thus, less contention is oleserv e thankfully acknowledge the support of the European
for each superblock, and consequently each thread must Wedmmission under the 6th and 7th Framework Programs
for less time in order to acquire a lock. However, at this pointhrough the 10Lanes (FP7-STREP-248615), HIPEAC (NoE-
the XFS log begins to be a significant performance bottlene@4408), and HIPEAC2 (FP7-ICT-217068) projects.

However, if we increase the log size to 2GB, and although the

log lock does not disappear from locitat output, the wait REFERENCES

time observed for this lock is significantly reduced, reiggit [11 P-E. Mckenney, J. Appavoo, A. Kleen, O. Krieger, O. KeeQR. Russell,
. ignificant performance benefits D. Sarma, and M. Soni, “Read-copy update,” in Ottawa Linux
In signi p : . Symposium, pp. 338-367, 2001.

Secondly, for the SSD setup, we observe that SSDs exhilit S. Boyd-Wickizer, A. Clements, Y. Mao, A. Pesterev, M. Eaashoek,

the same performance behaviour for the open and write systemR- Morris, and N. Zeldovich, “An analysis of linux scalabjilito many

. cores,” inProceedings of OSDI '10, (Vancouver, Canada), October 2010.
calls with the RAMDISK-PRIVATEDIR-LARGELOG setup. [3] R. Wheeler, “fsmark: a file-system stress test,” 2008.

However, for the read and unlink system calls, the SSIDg “Lock_stat: a mechanism providing statiscs on locks..”
reach their peak performance number with less CPUs (4 and http://Ixr.linux.no/linux+v2.6.37.2/Documentatioodkstat.txt.

V. CONCLUSIONS ANDFUTURE WORK

A Scaling Analysis of Linux I/0 Performance

Yannis Klonatos, Manolis Marazakis, and Angelos Bilas
{klonatos, maraz, bilas}@ics.forth.gr

Motivation & Previous work

Motivation: Related Work:
— Widespread availability of multi-core processors — Extensive analysis and experimentation by the Linux kernel developers in kernels 2.6.37+
— Scalability is a very hot topic: Introduction of Read-Copy-Update (RCU)
- Does the system performance scale with the » Parallel name lookups
number of available CPU cores? - Improved file-system level scalability (shown with XFS, EXT4)
— Server configurations with aggressive I/O resources — “An analysis of linux scalability to many cores” (OSDI’ 10): S, Boyd-Wickizer, A. Clements,
e I/O controllers with multiple storage devices, such as SSDs Y. Mao, A. Pesterev, M.F. Kaashoek, R. Morris, N. Zeldovich.
- Does system scale when I/0 is not the bottleneck? » Uses tmpfs, a file-system that operates completely in the DRAM-based buffer-cache.
Concerns: > In addition, in our work:
— Lock contention / Serialization points 1. We examine the scalability of commonly deployed file-systems
— Percentage of Idle CPUs 2. We consider block-level I/0
— Mitigate overheads with targeted tuning 3. Perform lock contention analysis

Lock contention analysis

Questions we address in this work: Experimental Setup
1. Which locks are responsible for scalability problems in the Linux Kernel? » Two 4-core Intel Xeon 5520 64-bit @ 2.26GHz
2. Are the scalability problems file-system specific? ~ 2 Hardware threads per core
> No. Both XFS and EXT4 file-systems suffer from the same problems. * 12 GB of DDR-III DRAM
3. Do storage scalability problems exist (even if storage is not the bottleneck)? * 24 32GB Intel X25-E SLC NAND-Flash SSDs
> Unlikely, since our SSD raid scales roughly equally with a RAMdisk. * 4 LSI MegaSAS 9260 storage controllers
4. Are there any preliminary & “easy” work-arounds? « RAID 0 Configuration for SSDs with 64KB chunk-size

« CentOS 5.5, vanilla kernel 2.6.37.2
Description » Two File-systems: XFS and EXT4

System Contention Subsystem in the

=11 Point Linux Kernel

Experimental Methodology

Responsible for keeping consistent the list

Open Run queue Jock CPU of processes that will run in this CPU - Use of modified version of fs_mark benchmark
Open Directory lock VFS Used in path resolution, keeps all paths in | > Widely used by Linux kernel developers
DRAM for quick lookup > Issues low-level file-system intensive operations

Wirite Zone lock Buffer-cache Responsible for holding the buffer cache » Original version supports opens, writes and unlinks
Read 7Zone lock Buffer-cache radix tree organization consistent > Added support for create system call
Unlink Suberblock lock SES Keeps superblock consistent. Superblock is =~ ~ ©Ur version reports operations per second

up updated in each unlink system call. - 128 application threads, 128 files of 512 KB data
Unlink Log lock XFS/EXT4 Keeps the FS journal consistent. * Vary number of CPUs from 1 to 16

Locks of Linux Kernel with high contention (RAMdisk) - Collect lock contention statistics using lock_stat

Measuring Kernel Scalability — Preliminary solutions

12810000
11529000 -
10248000
8967000 -

280000 - 340000 - | 100000
252000 - 306000 - T Q0000
224000 272000+ S0000
196000 - 238000 - 70000

¥ 7686000 - ¥ 168000 ¥ 204000+ ¥ 60000
= 6405000 | = 140000 - Z 1700004 = 50000
S s124000 S 112000 - S 1360004 = 40000
38430004 | —— RAMDISK SHAFREDDIE DEFAULTLOG 84000 - 1020004 30000
n | —— RAMDISK PRIVATEDIR. DEFAULTLOG
2562000 | _, B4 MDISK PRIVATEDIR LARGELOG 360001 63000 - 20000
1281000 | ceeees 24 55D3 280004 34000 10000
l:l I+'I'I'I'I'I'I'I'I'I'I'I'I'I'I'I I:I l:l l:ll IR L L P O D L L L D L L L L
012345678 910111213141516 0 0 012345678 910111213141516
H#CPUs #CPUs ECPUs
(a) Open (b) Write (d) Unlink
Preliminary solutions and work-arounds: Storage — based (24 SSDs, direct I/0) observations:
» Superblock and directory locks: » Request queue of the RAID device is the main scalability bottleneck.

v Using private directory per instead to one shared

directory for all threads. « Roughly equal performance with RAMdisk for open and write system calls.

« Better performance than RAMdisk for < 16 CPUs for read and unlink system calls.

» Log lock = Using larger lock size reduces contention

Open question: Do real applications (databases, file-servers) suffer from the same scalability problems?

Acknowledgements
IOLanes (FP7-STREP-248615), HIPEAC (NoE-004408), and HIPEAC2 (FP7-ICT-217068)

Computer Architecture & VLSI Systems Laboratory (CARV)
ol Oosnpgpasheas Bolanos

