
A Scaling Analysis of Linux I/O Performance
Yannis Klonatos, Manolis Marazakis, and Angelos Bilas

Foundation for Research and Technology - Hellas (FORTH)
Institute of Computer Science (ICS)

100 N. Plastira Av., Vassilika Vouton, Heraklion, GR-70013, Greece
{klonatos, maraz, bilas}@ics.forth.gr

I. I NTRODUCTION

The widespread availability of multicore processors in
server configurations with aggressive I/O resources (I/O con-
trollers along with multiple storage devices, such as solid-
state drives) is very promising for increasing levels of I/O
performance. However, in this work, we raise concerns about
the actual scalability of I/O performance observed in current
server configurations. We provide experimental evidence of
scalability issues, using the latest stable Linux kernel release
(v.2.6.37). We identify scaling limitations based on extensive
measurements and analysis of overheads, mostly lock con-
tention, using a synthetic workload, which consists of basic
filesystem tasks and employs a high degree of I/O concurrency.

Starting with a fairly common system configuration as a
baseline, we find that for several cases I/O performance does
not scale adequately with the number of available hardware
threads, for a variety of filesystem operations. Moreover, we
observe that performance may actually deteriorate when more
CPU cores become available. We attempt to mitigate over-
heads, as identified in our analysis, with targeted tuning. Still,
significant scaling limitations remain, motivating a critical re-
examination of the entire I/O path in the Linux kernel.

II. RELATED WORK

Scalability in multicore environments, including filesystem
performance, is nowadays a hot topic. Extensive analysis and
experimentation is currently being performed by the Linux
kernel developers themselves, as evident by numerous mail-
threads in the Linux Kernel Mailing List. An important result
of this ongoing debate has been the introduction in modern
kernels of the Read-Copy-Update (RCU) [1] mechanism. The
most recent analysis of Linux Scalability is to our knowl-
edge [2]. However, in this publication the authors do not:
1) Examine the scalability of commonly deployed filesystems,
such as XFS and EXT4, 2) Consider block-level I/O, as they
performed all their storage-related experiments usingtmpfs,
which operates entirely in the DRAM-based buffer-cache. Our
work focuses on these two specific aspects, presenting further
scalability issues in the common I/O path.

III. EXPERIMENTAL METHODOLOGY

We perform our evaluation on a x86-based Linux server,
consisting of the following components: a dual-socket Tyan
S7025 motherboard with two 4-core Intel Xeon 5520 64-bit

processors running at 2.26 GHz, with two hardware threads
per core, 12 GB of DDR-III DRAM, and 24 32-GB enterprise-
grade Intel X25-E SLC NAND-Flash SSDs, connected to four
LSI MegaSAS 9260 storage controllers. The SSDs are orga-
nized in a RAID-0 configuration using the defaultmd Linux
driver, with a chunk-size of 64KB. The Linux distribution
installed is CentOS, v.5.5, with version 2.6.37 of the mainline
(“vanilla”) kernel. We select this specific kernel because it
includes numerous recent scalability related patches. We use
two filesystems, XFS and EXT4 for our experiments.

For our evaluation, we use a modified version of the
fsmark [3] benchmark. fsmark is widely used by Linux kernel
developers because it issues low-level filesystem-intensive
operations, a property that makes it suitable for studying
filesystem scalability. The original version of the benchmark
provides support for open, write, read, unlink and fsync
system calls; we have added support for create, seek and
stat system calls. We have also modified the benchmark to
report operations per second for each system call, instead of
average execution times the original version reported. Forall
our experiments we use 128 application threads, each one
executing operations on 128 private files. Each file contains
512KB of data. Finally, we vary the number of CPU threads
in the range from 1 to 16.

We collect lock contention statistics using the lockstat [4]
mechanism provided by recent Linux kernels. Lockstat re-
ports for each lock: i. It’s average contention (how many times
threads failed to acquire the lock), and ii. The total wait time
associated with it. We use the aforementioned information to
locate contention bottlenecks.

IV. EXPERIMENTAL RESULTS

We make our experimental analysis in three parts. First, we
present scalability issues with the XFS filesystem running on
top of a ramdisk. We believe it is a fairly common system
configuration to use as a baseline, given the performance gap
between DRAM and SSDs. However, since modern server
systems can not always rely on DRAM-based caches to
achieve the highest performance possible, we then present
our scalability concerns using 24SSDs, which provide high
throughput and IOPS performance, resulting in the block-
devices never being the performance bottleneck. Finally, we
show that our observations also hold when using another
filesystem like EXT4, instead of XFS.

0 1 2 3 4 5 6 7 8 9 10111213141516
#CPUs

0

1281000

2562000

3843000

5124000

6405000

7686000

8967000

10248000

11529000

12810000

op
s/

se
c

RAMDISK_SHAREDDIR_DEFAULTLOG
RAMDISK_PRIVATEDIR_DEFAULTLOG
RAMDISK_PRIVATEDIR_LARGELOG
24 SSDs

(a) Open

0 1 2 3 4 5 6 7 8 9 10111213141516
#CPUs

0

28000

56000

84000

112000

140000

168000

196000

224000

252000

280000

op
s/

se
c

(b) Write

0 1 2 3 4 5 6 7 8 9 10111213141516
#CPUs

0

34000

68000

102000

136000

170000

204000

238000

272000

306000

340000

op
s/

se
c

(c) Read

0 1 2 3 4 5 6 7 8 9 10111213141516
#CPUs

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

op
s/

se
c

(d) Unlink

Fig. 1. Operations per second for the open, write, read and unlink system calls, for varying number of cores. We run four configurations: i) Using ramdisk with
all threads operating on the same directory (RAMDISK-SHAREDDIR-DEFAULTLOG), ii) Using ramdisk with each threads operating on its own directory
(RAMDISK-PRIVATEDIR-DEFAULTLOG), iii) Using ramdisk with each thread operating on its own directory and 2GB log (instead of the default 128MB,
RAMDISK-PRIVATEDIR-LARGELOG) and, finally iv) Using 24 SSDs.

To begin with, for the open system call using the ramdisk,
we observe the same behavior for all ramdisk configurations.
As shown in Figure 1, performance is first increased when
moving from 1 to 2 cores, however it then begins to drop as we
further increase the available CPU count. The main contention
point is the request queue lock, and the wait time is increased
significantly (up to 800%) when moving to a higher number
of available cores. The directory lock (dlock), used in path
resolution, exhibits the same behaviour when moving to more
than 4 cores.

Furthermore, for the read and writes system calls using
the ramdisk, we observe that there is high wait time for the
zone lock. This lock is responsible for holding the buffer
cache radix tree organization consistent, when it is accessed
through multiple threads. Although we notice that the wait
time for this thread is not decreased when we operate on
different directories instead of a single one (RAMDISK-
SHAREDDIR-DEFAULTLOG vs RAMDISK-PRIVATEDIR-
DEFAULTLOG), we notice that this time is significantly
reduced when using the larger log option (RAMDISK-
PRIVATEDIR-LARGELOG).

Then, for the unlink system call, we observe high con-
tention (>90% of the threads are continuously waiting) for
the superblock lock employed by XFS, when using a shared
directory. We argue this is due to the fact that the superblock
is updated in each unlink, causing the threads to be syn-
chronized at this point. When moving to different directories,
XFS spreads out the directories throughout the SSD address
space, in partitions called allocation groups, and uses a single
superblock for each of them. Thus, less contention is observed
for each superblock, and consequently each thread must wait
for less time in order to acquire a lock. However, at this point,
the XFS log begins to be a significant performance bottleneck.
However, if we increase the log size to 2GB, and although the
log lock does not disappear from lockstat output, the wait
time observed for this lock is significantly reduced, resulting
in significant performance benefits.

Secondly, for the SSD setup, we observe that SSDs exhibit
the same performance behaviour for the open and write system
calls with the RAMDISK-PRIVATEDIR-LARGELOG setup.
However, for the read and unlink system calls, the SSDs
reach their peak performance number with less CPUs (4 and

8 respectively), while after this point the request queue lock
is the main performance bottleneck. This is important, since
resolving the request queue contention point will result in
helping both ramdisk and I/O subsystems found in commonly
found in Linux server environments.

Finally, we wanted to observe what happens when using
another filesystem, rather that the XFS used so far. For this
purpose, we run again our benchmark with the EXT4 filesys-
tem. We notice, that although EXT4 achieves significantly less
performance compared to XFS for all systems calls (especially
for writes), the most significant observation is that EXT4
exhibits the same contention behaviour for the same locks as
XFS. This is important, since it reveals that if these contentions
are solved or mitigated, both filesystems (and most probably
others as well) will significantly benefit.

V. CONCLUSIONS ANDFUTURE WORK

Having collected experimental evidence of I/O scaling lim-
itations on modern server configurations, as presented so far,
our current work aims in touching several layers along the I/O
path in the Linux kernel, including caching for filesystem data
and metadata, and efficient submission and scheduling of I/O
requests. We are also using more complex benchmarks to em-
ulate server I/O workloads, operating at high I/O concurrency
levels. With the rapidly growing gap between processor and
I/O subsystem performance, we expect this research direction
to become critical for achieving adequate performance levels
for data-intensive application workloads.

ACKNOWLEDGMENTS

We thankfully acknowledge the support of the European
Commission under the 6th and 7th Framework Programs
through the IOLanes (FP7-STREP-248615), HiPEAC (NoE-
004408), and HiPEAC2 (FP7-ICT-217068) projects.

REFERENCES

[1] P. E. Mckenney, J. Appavoo, A. Kleen, O. Krieger, O. Krieger, R. Russell,
D. Sarma, and M. Soni, “Read-copy update,” inIn Ottawa Linux
Symposium, pp. 338–367, 2001.

[2] S. Boyd-Wickizer, A. Clements, Y. Mao, A. Pesterev, M. F.Kaashoek,
R. Morris, and N. Zeldovich, “An analysis of linux scalability to many
cores,” inProceedings of OSDI ’10, (Vancouver, Canada), October 2010.

[3] R. Wheeler, “fsmark: a file-system stress test,” 2008.
[4] “Lock stat: a mechanism providing statistics on locks..”

http://lxr.linux.no/linux+v2.6.37.2/Documentation/lockstat.txt.

Computer Computer Architecture & VLSI Systems Laboratory (CARV)Architecture & VLSI Systems Laboratory (CARV)

A Scaling Analysis of Linux I/O PerformanceA Scaling Analysis of Linux I/O Performance
YannisYannis KlonatosKlonatos, , ManolisManolis MarazakisMarazakis, and , and AngelosAngelos BilasBilas

{{klonatosklonatos, , marazmaraz, , bilasbilas}@}@ics.forth.grics.forth.gr

IOLanesIOLanes (FP7(FP7--STREPSTREP--248615), 248615), HiPEACHiPEAC (NoE(NoE--004408), and HiPEAC2 (FP7004408), and HiPEAC2 (FP7--ICTICT--217068)217068)

AcknowledgementsAcknowledgements

Motivation:

– Widespread availability of multi-core processors

– Scalability is a very hot topic:

 Does the system performance scale with the

number of available CPU cores?

– Server configurations with aggressive I/O resources

• I/O controllers with multiple storage devices, such as SSDs

 Does system scale when I/O is not the bottleneck?

Concerns:

– Lock contention / Serialization points

– Percentage of Idle CPUs

– Mitigate overheads with targeted tuning

Motivation & Previous work Motivation & Previous work

Measuring Kernel Measuring Kernel Scalability Scalability –– Preliminary solutions Preliminary solutions

Lock contention analysisLock contention analysis

Experimental Setup

•• Two 4Two 4--core Intel Xeon 5520 64core Intel Xeon 5520 64--bit @ 2.26GHzbit @ 2.26GHz

 2 Hardware threads per core2 Hardware threads per core

•• 12 GB of DDR12 GB of DDR--III DRAMIII DRAM

•• 24 32GB Intel X2524 32GB Intel X25--E SLC NANDE SLC NAND--Flash SSDsFlash SSDs

•• 4 LSI 4 LSI MegaSASMegaSAS 9260 storage controllers9260 storage controllers

•• RAID 0 Configuration for SSDs with 64KB chunkRAID 0 Configuration for SSDs with 64KB chunk--sizesize

•• CentOSCentOS 5.5, vanilla kernel 2.6.37.2 5.5, vanilla kernel 2.6.37.2

•• Two FileTwo File--systems: XFS and EXT4systems: XFS and EXT4

Open Open questionquestion: Do real applications : Do real applications (databases, file(databases, file--servers) servers) suffer from the same suffer from the same scalability problems?scalability problems?

Experimental Methodology Experimental Methodology

•• Use of modified version of Use of modified version of fs_markfs_mark benchmarkbenchmark

 Widely used by Linux kernel developersWidely used by Linux kernel developers

 Issues lowIssues low--level filelevel file--system intensive operations system intensive operations

 Original version supports opens, writes and unlinksOriginal version supports opens, writes and unlinks

 Added support for create system callAdded support for create system call

 Our version reports operations per secondOur version reports operations per second

•• 128 application threads, 128 files of 512 KB data128 application threads, 128 files of 512 KB data

•• Vary number of CPUs from 1 to 16Vary number of CPUs from 1 to 16

•• Collect lock contention statistics using Collect lock contention statistics using lock_statlock_stat

Related Work:

– Extensive analysis and experimentation by the Linux kernel developers in kernels 2.6.37+

• Introduction of Read-Copy-Update (RCU)

• Parallel name lookups

• Improved file-system level scalability (shown with XFS, EXT4)

– “An analysis of linux scalability to many cores” (OSDI’ 10): S, Boyd-Wickizer, A. Clements,
Y. Mao, A. Pesterev, M.F. Kaashoek, R. Morris, N. Zeldovich.

 Uses tmpfs, a file-system that operates completely in the DRAM-based buffer-cache.

 In addition, in our work:

1. We examine the scalability of commonly deployed file-systems

2. We consider block-level I/O

3. Perform lock contention analysis

Questions we address in this work:

1. Which locks are responsible for scalability problems in the Linux Kernel?

2. Are the scalability problems file-system specific?

 No. Both XFS and EXT4 file-systems suffer from the same problems.

3. Do storage scalability problems exist (even if storage is not the bottleneck)?

 Unlikely, since our SSD raid scales roughly equally with a RAMdisk.

4. Are there any preliminary & “easy” work-arounds?

System
call

Contention
Point

Subsystem in the
Linux Kernel

Description

Open Run queue lock CPU
Responsible for keeping consistent the list
of processes that will run in this CPU

Open Directory lock VFS
Used in path resolution, keeps all paths in
DRAM for quick lookup

Write Zone lock Buffer-cache Responsible for holding the buffer cache
radix tree organization consistent

Read Zone lock Buffer-cache

Unlink Superblock lock XFS
Keeps superblock consistent. Superblock is
updated in each unlink system call.

Unlink Log lock XFS/EXT4 Keeps the FS journal consistent.

Locks of Linux Kernel with high contention (RAMdisk)

Storage Storage –– based (24 SSDs, direct I/O) observations:based (24 SSDs, direct I/O) observations:

•• Request queue of the RAID device is the main scalability bottleneck.Request queue of the RAID device is the main scalability bottleneck.

•• Roughly equal performance with Roughly equal performance with RAMdiskRAMdisk for open and write system calls.for open and write system calls.

•• Better performance than Better performance than RAMdiskRAMdisk for < 16 CPUs for read and unlink system calls.for < 16 CPUs for read and unlink system calls.

Preliminary solutions and workPreliminary solutions and work--aroundsarounds::

 Superblock and directory locks:Superblock and directory locks:

 Using private directory per instead to one shared Using private directory per instead to one shared
directory for all threads.directory for all threads.

 Log lock Log lock Using larger lock size reduces contentionUsing larger lock size reduces contention

