
Sierra: Practical Power-proportionality for Data Center Storage

Eno Thereska

Microsoft Research

etheres@microsoft.com

Austin Donnelly

Microsoft Research

austind@microsoft.com

Dushyanth Narayanan

Microsoft Research

dnarayan@microsoft.com

Abstract
Online services hosted in data centers show significant di-
urnal variation in load levels. Thus, there is significant po-
tential for saving power by powering down excess servers
during the troughs. However, while techniques like VM mi-
gration can consolidate computational load, storage state has
always been the elephant in the room preventing this pow-
ering down. Migrating storage is not a practical way to con-
solidate I/O load.

This paper presents Sierra, a power-proportional dis-
tributed storage subsystem for data centers. Sierra allows
powering down of a large fraction of servers during troughs
without migrating data and without imposing extra capac-
ity requirements. It addresses the challenges of maintain-
ing read and write availability, no performance degradation,
consistency, and fault tolerance for general I/O workloads
through a set of techniques including power-aware layout,
a distributed virtual log, recovery and migration techniques,
and predictive gear scheduling. Replaying live traces from a
large, real service (Hotmail) on a cluster shows power sav-
ings of 23%. Savings of 40–50% are possible with more
complex optimizations.

Categories and Subject Descriptors C.2.4 [Computer-
communication networks]: Distributed Systems

General Terms Design, Performance, Reliability

Keywords Data center, energy, power-proportionality

1. Introduction
Server power consumption is a major problem for small
and large data centers, since it adds substantially to an or-
ganization’s power bills and carbon footprint. Barroso and
Hölzle have argued for power proportionality: the power
used should be proportional to the dynamic system load,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

EuroSys’11, April 10–13, 2011, Salzburg, Austria.
Copyright c© 2011 ACM 978-1-4503-0634-8/11/04. . . $10.00

even though the system is provisioned for the peak load [Bar-
roso 2007]. Such a system could exploit diurnal variations in
load, such as the “Pacific Ocean trough”, seen in many user-
facing services [Hamilton 2008].

Achieving power proportionality in hardware is hard,
despite some support such as dynamic voltage scaling for
CPUs. Servers continue to draw significant power even when
idle, which can be up to 50% of the peak power consump-
tion [Fan 2007]. A feasible alternative for large data centers
is to turn off entire servers during troughs and consolidate
load on the remaining servers. Virtualization techniques can
transparently migrate computational state and network con-
nections [Clark 2005]. However, storage presents a chal-
lenge. It is not feasible to migrate petabytes of storage sev-
eral times a day for load consolidation (it takes too long).

This paper describes Sierra, a power-proportional dis-
tributed storage system. Sierra handles general workloads
with read and writes (in contrast to recent work e.g., [Amur
2010] that only addresses read-only workloads) and Sierra
supports in-place overwrites of data (this differs from append-
only stores such as GFS [Ghemawat 2003]). Sierra exploits
the redundancy (replication) in such systems to put the sys-
tem in a lower “gear” during troughs by turning servers off.
There are several challenges in doing this. To maintain read
availability, at least one replica of each object must be on an
active server always. This must be done without increasing
the replication level and hence the system capacity require-
ments. For write availability, updates must succeed even
when many servers are turned off. Durability, consistency,
and fault-tolerance guarantees must be maintained on all
data including the updates in low gear. Performance must
not degrade: there should always be enough servers on to
handle the load at any given time, and the load should be bal-
anced across them. Powering servers down must not increase
recovery time for transient or permanent server failures.

To our knowledge, Sierra is the first distributed storage
system that meets all the above challenges and also pro-
vides power-proportionality. Our specific contributions are
as follows. A new power-aware layout allows a significant
fraction of the servers to be powered down without losing
availability, load balancing, or fault tolerance. A novel use
of a distributed virtual log allows updates to objects when
some replicas are turned off. Such updates have the same

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

09/07 09/08 09/09 09/10 09/11 09/12 09/13

N
or

m
al

iz
ed

 d
is

k
I/O

 ra
te

Date (in 2009)
(a) Hotmail

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

09/07 09/08 09/09 09/10 09/11 09/12 09/13

N
or

m
al

iz
ed

 d
is

k
I/O

 ra
te

Date (in 2009)
(b) Messenger

Figure 1. One week of I/O load for two large online services

consistency, durability, and replication for fault tolerance as
updates made when no servers are powered down. An eval-
uation of a full prototype running on a server cluster, using
I/O traces from Hotmail, shows that significant power sav-
ings can be achieved with little performance impact.

2. Motivation, goals and non-goals
Sierra is based on the idea of gear-shifting: turning servers
off and on to track diurnal variations in load. The savings
achievable from this method depend on the average utiliza-
tion of the system relative to the peak, and the predictability
of load peaks and troughs. Figure 1(a) and 1(b) show the
aggregated I/O load over time for two large online services,
for 1 week. The load is aggregated over tens of thousands
of servers for Hotmail (Windows Live Mail), and thousands
of servers for Windows Live Messenger. The graphs show
the disk bandwidth usage aggregated across all the back-end
storage in the service at one-hour intervals and normalized
to the peak value for each service (Section 4 will give more
information about the services). We observe clear periodic
patterns with significant peak-to-trough ratios.

Figure 2 shows the CDF of time spent at different uti-
lization levels, again relative to the peak load. Substantial
periods of time are spent with utilization much lower than
the peak. The average utilization for Hotmail is 42% of its
peak and that of Messenger is 60%. Thus, there is substantial
scope for power savings through power proportionality. As
an example, 50% savings in power for a 50,000 server data
center could generate savings of $6 million/year assuming a
power bill of $1 million/month [Hamilton 2009].

The primary scenario for Sierra, and the focus of this
paper, is clusters of commodity servers where computation
and storage are co-located on the same nodes. However,
Sierra is also applicable to dedicated storage clusters. It is
also relevant to SANs (storage area networks) but would
require changing the internal behavior of the SAN. It is also

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

Fr
ac

tio
n

of
 h

ou
rs

 in
 w

ee
k

Utilization relative to peak hour

Hotmail

Messenger

Figure 2. CDF of utilization for services

possible to use Sierra to spin down disks rather than turn off
servers, e.g., if all server CPU resources are required.

This paper does not address migration and consolida-
tion of computational and network load, since others have
addressed them successfully (e.g., see [Chen 2008, Clark
2005]). In deployments where computation and storage are
co-located, the selection of servers to turn off would need
to be co-ordinated, for example between the VM migration
layer and Sierra, to ensure that compute and I/O load are
consolidated onto the same physical servers.

This paper does not address “trough-filling”: eliminating
troughs by filling them with useful work. Trough-filling by
service consolidation was not effective for the online ser-
vices we examined for two reasons. First, even when all
users within a service are consolidated, we still see troughs
(the Hotmail load graph captures all Hotmail users globally).
Geo-distribution of these services will only lead to larger
peak-to-trough ratios. Second, when consolidating across
services, some are much larger and dominate (e.g., Hotmail
has an order of magnitude more servers than Messenger).
Filling troughs by selling the idle resources is an alternative
for large cloud providers. Users’ tasks could be run during

troughs whenever the users’ bid price (described by [Ama-
zon 2010, Stokely 2009]) exceeds the cost of powering the
servers. This approach is complementary to Sierra.

3. Design and implementation
Sierra adopts existing best practices to provide scalable
replicated distributed storage. This “baseline” architecture
for Sierra is described in Section 3.1. It provides scalability,
load balancing, high availability, fault tolerance, and strong
read/write consistency. The challenges lie in powering down
significant numbers of servers at low load without sacrificing
the above properties.

The first challenge is layout: the assignment of data repli-
cas to servers. The commonly used “naı̈ve random” ap-
proach is simple, and provides high availability, good load
balancing, and parallelism when rebuilding data after a fail-
ure. However, it does not allow significant power savings.
Perhaps surprisingly, it is possible to lay out data such that
significant numbers of servers can be turned off, while still
maintaining good availability, load balancing and rebuild
parallelism. Section 3.2 describes such a layout, used by
Sierra. The layout is also optimal in that it provides the max-
imum possible power savings for any desired level of avail-
ability. Further, this is achieved without increasing the repli-
cation level of objects or over-provisioning the system.

The second challenge is to maintain read and write avail-
ability at the original levels. This must be done in low gear
(while a significant number of servers are off), during gear
transitions (servers are being powered up or down), and
on failures. Section 3.3 describes the distributed virtual log
(DVL) used by Sierra to keep the system available for writes.
The DVL builds on the concept of write off-loading for
RAID-based storage [Narayanan 2008]. We have extended
it to support a distributed storage system, which introduces
new challenges of network efficiency, availability, consis-
tency, and fault tolerance. By solving these challenges we
were able to considerably simplify the rest of the system and
yet provide write availability and consistency at all times.

The third challenge is to predict the number of servers
required at any time to sustain the system load, so that per-
formance is not degraded. This is done by the gear scheduler
component of Sierra, described in Section 3.5.

3.1 Baseline architecture

The baseline design of Sierra (Figure 3) is not novel, and
resembles existing scalable distributed storage systems (e.g.,
see [Azu 2009, Abd-El-Malek 2005, Ghemawat 2003, Saito
2004]); we describe it here for context.

Sierra provides read/write access to objects in units of
chunks. The chunk size is a system parameter: a typical
value is 64 MiB. Each chunk is replicated on multiple chunk
servers; a typical replication factor for data is 3. We use
primary-secondary replication; in general, at any time, a
chunk server will be the primary for some chunks and a

Metadata service (MDS)

Chunk servers

chunk ID, prim
ary,...

read (chunk ID, offset, size,...)
write (chunk ID, offset, size, data,...)

Client

lookup(object ID
, offset)

load statistics

gear schedules

Gear scheduling
service

Figure 3. Baseline architecture for Sierra. We extend this
architecture to support power-proportionality.

secondary for others. Clients can read or write arbitrary byte
ranges within a chunk. All client read and write requests are
sent to the primary, which determines request ordering and
ensures read/write consistency. Write requests are sent by
the primaries to all replicas in parallel and acknowledged to
the client when all replicas are updated. Read requests are
served by primaries directly from the local replica.

Sierra is intended to be a general-purpose storage system
for use by a variety of applications. Hence, Sierra supports
overwriting of existing chunk data; this differs from append-
only stores such as GFS [Ghemawat 2003]. This allows
Sierra to support a wider variety of workloads, but also
introduces the challenge of supporting overwrites of chunks
when one or more replicas are powered down.

A centralized metadata service (MDS) maps each ob-
ject to its constituent chunks, and each chunk to its current
primary. The MDS is an in-memory, deterministic state ma-
chine that could be replicated for high availability [Schnei-
der 1990]. The MDS is not on the data path; clients cache
metadata lookups from the MDS, and metadata is only
updated on chunk creation or deletion and server failure,
power-up, or power-down. The MDS grants leases to chunk
primaries, which are periodically renewed through a heart-
beat mechanism. If a lease expires it is reassigned by the
MDS to a different replica of the chunk. Each such “view
change” causes the MDS to increment a per-chunk epoch,
which functions as a viewstamp [Oki 1988]. Requests from
older epochs are rejected by chunk servers, ensuring that all
replicas see a consistent ordering of client requests.

To reduce the metadata overheads, Sierra groups chunks
into chunk groups. Leases and epochs are per chunk group
rather than per chunk. All chunks in a chunk group are
replicated on the same servers and have the same primary
at any given time. Chunks are assigned randomly to chunk
groups on creation. The number of chunk groups is a system
parameter that trades off MDS load for fine-grained load
balancing across servers. By default Sierra currently uses
64 chunk groups per chunk server. Load balancing in Sierra
is done by uniform random assignment of chunks to chunk
groups, chunk groups to servers, and primaries to replicas.

A

B

C D

FE

(a) Naı̈ve random

A
B
C

D

F

Replica group 1

Replica group 2

E

(b) Naı̈ve grouping

A
B

D

F

C

G
ea

r
gr

ou
p

0

G
ea

r
gr

ou
p

1

E

(c) Power-aware grouping

Figure 4. Different layouts for 6 chunks (A-F), 4 servers, and 2-way replication. The naı̈ve random layout replicates each
chunk on 2 servers chosen at random. This layout is excellent for load balancing and rebuild parallelism but leads to little or no
power savings. The naı̈ve grouping layout limits the location of chunks to replica groups (two in this case). A chunk must not
be replicated across replica groups. This layout leads to great power savings but has poor rebuild parallelism. The power-aware
grouping layout relaxes the constraint placed by naı̈ve grouping and introduces a reasonable tradeoff between load balancing,
rebuild parallelism, and power savings.

Individual chunks may experience different diurnal access
patterns and loads, however chunk groups and chunk servers
see the same aggregated load pattern.

Currently the system uses primary/secondary replication
with 1-phase commit. This guarantees that all client requests
are applied in the same order on all replicas. However a fail-
ure of a primary during a write request can result in some
but not all replicas applying the write. On such a failure, the
client library corrects the divergence by re-sending the write
to the new primary, which uses the DVL to ensure that the
write succeeds. Hence, unlike optimistic concurrency con-
trol systems (e.g., [DeCandia 2007]) there is no long pe-
riod of divergence. Alternatively two-phase commit or chain
replication could be used to prevent temporary replica di-
vergence at the cost of higher update latencies [van Renesse
2004]. Any of these techniques are reasonable and would
work well with the power-saving aspects of Sierra.

3.2 Power-aware layout

We find that layout, the way in which chunks are assigned
to chunk servers, makes a large difference in how power-
proportional a system can be. The most commonly used lay-
out today is a naı̈ve random layout or a variant of it, where
each chunk is replicated on r servers chosen at random. Fig-
ure 4(a) shows a simple example with 4 servers, 6 chunks,
and 2-way replication.

Our goal is a layout that can maintain g available copies
of each chunk (out of a total of r, the replication level)
using only g

r of the servers. If data is evenly distributed over
servers, then this is the minimum number of servers required
to host g

r of the data. However, the layout must ensure that
this fraction corresponds to exactly g replicas of each chunk.
We define a layout as optimal for power proportionality if it

Active Rebuild Load
servers distr.

Naı̈ve random N − (r − g) N rC / N
Naı̈ve grouping N g

r 1 C / N
r

Power-aware N g
r

N
r C / N

r

Table 1. Active servers, rebuild parallelism, and load distri-
bution for different layouts with N servers, C chunks, and
r-way replication. g refers to the available copies of each
chunk, or gear level (1 ≤ g ≤ r). A load distribution of rC
/ N means rC chunk replicas are uniformly distributed over
N servers.

achieves this property for every integer g, 1 ≤ g ≤ r. The
value of g is now the gear level of the system at any time.

Unfortunately, the naı̈ve random layout is far from op-
timal. In Figure 4(a)’s example, to keep 1 replica of every
chunk available, we need 3 servers out of 4, rather than 2. As
the number of servers and chunks increases, the minimum
number of active servers required approaches N − (r − g)
rather than N g

r where N is the total number of servers.An
alternative approach is to put servers into replica groups,
each of size r (Figure 4(b)). A chunk is then assigned to one
replica group rather than to r independently chosen servers.
This layout is optimally power-proportional, since r − g
servers in each replica group can be turned off in gear g.
However, naı̈ve grouping of servers suffers from a lack of
rebuild parallelism because of the constraint on where repli-
cas can reside. When a server suffers a permanent failure,
intuitively there are fewer servers to rebuild from (in the il-
lustrated example just 1 — this could lead to a read bottle-
neck) and fewer servers that one can rebuild on, which could
lead to a write bottleneck.

2 2 2 2

3 3 3 3

1 1 1 1

1 1 1 1

(a) Rack-aligned

2 3 1 2

3 1 2 3

1 2 3 1

1 2 3 1

(b) Rotated

Figure 5. Two ways of assigning gear groups.

Sierra generalizes naı̈ve grouping to achieve both power
savings and high rebuild parallelism with power-aware
grouping (Figure 4(c)). Each server is assigned to exactly
one of r gear groups, each of size N

r . Each chunk is repli-
cated once in each gear group. Now any g out of r gear
groups can serve g replicas of each chunk. If a server fails,
then its data can be rebuilt in parallel on all remaining servers
in its gear group. Thus, the rebuild parallelism is N

r where
N is the total number of servers.

Table 1 summarizes the three approaches. The small ex-
amples in Figure 4 do not show this, but it is important to
note that in realistic deployments, all three layouts will bal-
ance load well by distributing a large number of chunk repli-
cas over a much smaller number of servers. Compared to
the naı̈ve random layout, the two power-proportional layouts
spread 1

r as many replicas over 1
r as many resources. How-

ever, this is still a very large number: we are aiming at sys-
tems with millions of chunks spread across 1000s of servers.
The same load balancing is maintained at lower gears.

For a large data center, servers might be further grouped
into clusters. Different clusters could store different data,
and be independently organized using power-aware group-
ing. Different clusters could also have different replication
factors or coding schemes. E.g., small hot objects might
be replicated with r > 3, and large cold objects might be
erasure-coded. With an m-of-n erasure code, power-aware
grouping allows g

n of the servers to serve all data with a re-
dundancy of g − m, (m ≤ g ≤ n).

Smaller clusters reduce the dependencies between servers
and hence the overhead of waking up sleeping replicas when
an active replica fails. However, the cluster should be large
enough so that rebuild speeds are limited by network band-
width rather than server performance; with current hardware
we expect each cluster to contain 100–1000 servers.

Sierra also places chunk replicas in different fault do-
mains, i.e., racks. There are two options here for power-
aware layout: rack-aligned and rotated (Figure 5). Both op-
tions give the same fault tolerance, power proportionality,
and load balancing. They differ in the selection of servers to
be turned off leading to different tradeoffs on power and ther-
mal balance. In the rack-aligned case, all servers in a rack are
in the same gear group and hence always in the same power

Client

Secondaries

Primary

DVL

chunk files

Loggers

Chunk files

Non
logging
mode
writes

All
writes Reads

Logging
mode
writes

log-structured, versioned storage

Reclaims

Figure 6. Data paths in logging and non-logging modes.
The dotted box represents a single chunk server acting as
a primary.

state. This permits entire racks to be turned off, allowing ad-
ditional power savings by turning off rack-wide equipment
such as switches. The rotated layout distributes the powered-
up servers, and hence the thermal load, evenly across racks.

Our layout scheme does not add any additional complex-
ity to data migration or adding and removing servers (or
whole racks) to the system. As part of any data migration
the constraint that the new location must be in the same gear
group as the old location must be preserved.

3.3 Distributed virtual log

Each primary in Sierra is associated with one instance of a
distributed virtual log or DVL (Figure 6). The DVL is used
to reliably absorb updates to replicas that are on powered-
down or failed servers. Hence, it is optimized for writes and
for short-term storage. When one or more secondaries is un-
available (powered down or failed), a Sierra primary enters
“logging mode”. In this mode it sends writes to the primary
replica and to the DVL but not to the secondaries. Data writ-
ten to the DVL is replicated rL = r − 1 times, guaranteeing
a total of r replicas of all data. Along with the data, the DVL
writes metadata including the chunk ID, the byte range writ-
ten, a version number, and the primary’s location. When all
secondaries are available again, the primary enters “reclaim
mode”, where it scans the DVL and applies the deferred up-
dates to the secondaries in the background. Once reclaimed,
the data is deleted from the DVL.

No dedicated disk resources are assigned to a DVL; in-
stead all DVLs share a common pool of loggers. Each logger
uses a local on-disk log to store updates. Data from differ-
ent DVLs is physically interleaved on the loggers but is kept
logically separate. Write requests are load-balanced by the
DVL across the set of available loggers. The DVL locally
maintains a small in-memory map (recoverable from on-disk
records at any time) that tracks the location of its data, and

C C C L

C C C L

C C C L

C C C L

(a) Dedicated

C C C C

C C C C

C C C C

C C C C

L L L L

L L L L

L L L L

L L L L

(b) Co-located

Figure 7. Two ways of configuring loggers (L) and chunk
servers (C)

can also be queried by applications. Each DVL has a logger
view, which is the set of all loggers available for use by it.
This logger view is stored in the MDS, since it is small and
infrequently updated.

The DVL provides the same semantics as a local on-disk
log, even though successive writes and deletes can be sent to
different loggers. These are:
• Write requests can be issued concurrently and are com-

mitted in FIFO order.
• Writes and deletions are durable when acknowledged.
• Reads always return the latest written data.
• Reads never return deleted data.

Write ordering is guaranteed by storing a monotonically
increasing version (monotonic per-primary, not the whole
cluster) with each write sent to the loggers. Correct dele-
tion is guaranteed by writing a versioned, durable deletion
marker. The deletion marker is deleted only when all older
versions of the data have been deleted from all loggers.

Loggers can be run on dedicated servers or co-located
with chunk servers as shown in Figure 7. The dedicated con-
figuration minimizes contention between the chunk server
workload and the logger workload, allowing the loggers to
service mostly writes for which they are optimized. The ded-
icated configuration requires additional resources, but still
provides significant total power savings. The provisioning
method for both cases is described in Section 3.5.

3.3.1 Network-aware logging

Sierra minimizes the network overheads of logging and re-
claim, especially the usage of scarce cross-rack (top-level
switch) bandwidth. We use several optimizations to achieve
this. First, the primary always serves reads from the local
replica when the latest data is available there. This reduces
disk and network load by avoiding demand reads on the
DVLs, allowing the loggers to service mostly writes in log-
ging mode and sequential scans in reclaim mode. A second
network optimization is a direct data path from the loggers
to the secondaries while reclaiming; for correctness, the con-
trol path always goes through the primary.

Third, the DVL uses a network-aware logger choice pol-
icy. In general, the DVL can send each update to any rL

loggers in its logger view. However, these loggers must be
in different fault domains for fault tolerance. Also, if loggers
are co-located with chunk servers, the rL loggers must be
in different gear groups. This ensures that turning off chunk
servers while gearing down does not make logged data un-
available. Subject to these constraints, the logger choice pol-
icy minimizes both total network bandwidth and cross-rack
bandwidth usage. For every write request, the DVL for a
chunk group primary G considers its loggers in this order:
1. Loggers on the same server as a replica of G,
2. Loggers in the same rack as a replica of G, and
3. Loggers in other racks.
Within each of these groups, loggers are sorted by disk load.
The DVL then greedily chooses the first rL loggers in this
ordering that satisfy the constraint of being in different fault
domains from each other and from the primary. Typically
this will result in one logger in the same rack as each sec-
ondary. Reclaiming is done by each replica transferring data
from the logger closest to it. In rare cases the DVL gets de-
mand read requests; these are sent to the logger(s) closest to
the primary and holding the required data.

With these optimizations, logging of updates uses no
more network bandwidth than normal replication without
a DVL. Reclaiming uses a modest amount of additional in-
rack bandwidth, but no cross-rack bandwidth is used except
for control messages. Furthermore, reclaiming is a back-
ground process that is run at low priority.

3.3.2 DVL recovery and migration

The primary for a chunk group always holds a lease at the
MDS for that chunk group. If the primary fails to renew the
lease, the MDS initiates a view change with a new epoch
number. It grants the lease to another replica of the chunk
group, which becomes the new primary. Before accepting
requests, the new primary must instantiate the correct lo-
cal state of its DVL, i.e., the metadata which identifies the
location and version of all logged data. This is done by re-
questing the metadata from all L loggers in the DVL’s logger
view, concurrently. Each logger first completes all outstand-
ing requests for that DVL, and then atomically updates the
epoch and returns the in-memory metadata for that DVL.
The logger then does not accept any further requests from
the old epoch. When L−rL +1 loggers have responded, the
DVL’s state is complete and the DVL can begin operation.

When a server is powering down rather than failed, we
use an optimization that avoids running DVL recovery.
Chunk group primaries on a server about to power down
proactively migrate themselves. First, each primary com-
pletes any outstanding requests on the chunk group, while
rejecting new ones (these will be retried by the client at the
new primary). Then, it serializes its DVL state and sends
it as part of a lease cancellation message to the MDS. The
MDS forwards this state to the new primary as part of the
lease grant message.

When all primaries have been migrated, a server S that is
powering down sends a final “standby” message to the MDS
and to all primaries for which it is a secondary. The MDS
then marks S as “powered down”. S’s peers then use the
DVL for updates rather than attempting to update S. When
S wakes up from standby it resumes sending heartbeats to
the MDS. The MDS then re-balances load by sending S a
list of chunk groups to acquire leases on. S then contacts the
current primary of each chunk group to initiate the migra-
tion.

3.4 Fault tolerance and availability

This section describes novel aspects of fault tolerance in
Sierra. The lease reassignment protocol maintains read avail-
ability after a transient chunk server failure; this is standard
and we do not discuss it further. Write availability on fail-
ure is maintained by using the DVL to absorb writes; the
DVL was described in Section 3.3. After a permanent chunk
server failure, its data is re-replicated in parallel on to other
servers in the same gear group (Section 3.2). Here we con-
sider other failure modes and their implications for Sierra.

Transient failures in low gear: When the MDS detects
failure of a chunk server S, it wakes up all servers in the
cluster holding other replicas of S’s chunks. This takes a few
seconds (if waking from standby) or minutes (if powering
up) which does not significantly increase the window of
vulnerability for two additional failures. However, when the
system is already in the lowest gear, failure of a single
server can cause the last active replica of a chunk to become
temporarily unavailable during this wakeup time. This can
be avoided by setting the minimum gear level gmin to 2.
gmin is a policy parameter that trades power savings for a
higher probability of unavailability on failure with typical
values of 1 (for more power savings), and 2 (for higher
availability).

Permanent failures in low gear: When a transient fail-
ure of a server S is detected, the MDS wakes up all sleeping
replicas of S’s chunks within a few minutes. Since detection
of permanent failure usually takes longer than this, all repli-
cas are available to begin rebuild as soon as permanent fail-
ure is detected. In any case, the rebuild time is much larger
than the wakeup time and dominates the total recovery time.
Hence, there is no significant increase in the window of vul-
nerability to additional failures.

Transient and permanent logger failures: When a
server fails any logger on it also fails. However, replicas
of each record on a failed logger are still available on rL − 1
other servers. One option to maintain this fault tolerance is
to re-replicate the at-risk data (log records with fewer than
rL available replicas) on other loggers. However, since the
loggers are only intended for short-term storage, this results
in wasted work. Instead, primaries first try to reclaim at-risk
data at high priority, waking up secondaries as necessary. If
a logger fails permanently it is deleted from the logger view
of all DVLs. Before a new logger is added to a DVL’s logger

view, all data on it is deleted since it might be stale. This is
done efficiently by writing a single “delete all” record to the
log head.

Failures due to power cycling: We are not aware of
any reliable data on the effect of power cycling on failures.
However, Sierra minimizes the power cycling of servers in
two ways. First, cycling is done at a coarse time granularity
aimed at changing gears a few times per day. Second, the
gear scheduler (Section 3.5) rotates the selection of gear
groups for power-down over several days. This evens out the
amount of power cycling per server (and also the amount of
idle time for maintenance activities such as scrubbing.)

Garbage collection: When data is reclaimed from the
DVL it is marked as deleted. The DVL does so through
appending a versioned deletion marker to the loggers. The
data and deletion markers must eventually be garbage col-
lected from the DVL. When data in the DVL is overwritten,
the older version becomes stale and becomes a candidate
for garbage collection as well. Garbage collection of dele-
tion markers must wait until all stale versions of the deleted
data are removed. If the stale versions are on a failed logger,
garbage collection of those deletion markers is blocked until
the logger becomes unavailable or is deleted from the logger
view. Deletion markers are small (i.e., they do not take up
much space in the DVL) and this is not a problem in gen-
eral. Similarly, during DVL recovery, garbage collection of
all deletion markers is blocked until all loggers in the logger
view have responded.

Garbage collection is a background maintenance process
(it has background I/O priority). Write and delete requests
are never blocked as long as rL fault-uncorrelated loggers
are available. The DVL is a best-effort service and is not
meant to be used as a long-term file system. Hence, it is sim-
pler than a general log-structured file system. In the worst-
case that all loggers are unavailable (e.g., because a huge
data burst has filled their capacity) and a write arrives that
must be logged (e.g., because it is an overwrite of data al-
ready in the DVL), the write must block until the garbage
collection frees up space in the DVL. In practice, past data
should be used to provision the loggers with enough capac-
ity to absorb data until it is reclaimed and such unavailability
should be a very rare case. Section 11 provides some illus-
trative numbers on our logger capacity requirements.

3.5 Gear scheduler

The gear scheduler predicts system load and schedules
servers to power down or up accordingly. It is a centralized
component that periodically aggregates load measurements
from chunk servers, and computes gear schedules for the
future. Our gear scheduler is simple, because our workloads
exhibit predictable patterns. It predicts load for each hour
of the present day based on historical averages from that
same hour in previous days. It is important to note that not
all workloads will exhibit predictable patterns. For example,
load will be higher than predicted for flash crowds and lower

than predicted for holidays. A hybrid scheduler based on his-
toric averages and reacting to the current load is likely to be
superior to ours for such cases. We opted to use a simple one
because it worked well for us.

The load metric used by the gear scheduler is the overall
I/O rate generated by all the clients of the storage system.
Random-access I/O rate (measured in IOPS) and stream-
ing I/O rate (measured in MiB/s) are considered separately.
Reads and writes are also considered separately, and the
write rate is multiplied by r to account for replication. The
raw load metrics are measured every second at each primary,
and periodically sent to the scheduler, which aggregates the
load across the whole system. It then uses the peak values
for each hour as the load metrics for that hour. We use the
peak value since I/O load is often bursty and using the mean
value can significantly degrade performance during bursts.

Given the measured performance per chunk server and
the load, the scheduler computes the number of chunk
servers required to sustain the system load in each hour:

Nnonseq =
TotalIOPSread

ServerIOPSread
+ r · TotalIOPSwrite

ServerIOPSwrite

Nseq =
TotalMiB/sread

ServerMiB/sread
+ r · TotalMiB/swrite

ServerMiB/swrite

Nload = �max(Nnonseq, Nseq)�
This corresponds to a gear level g = r Nload

N ; in general
this will not be a whole number but have a fractional part.
All servers in the lowest �g� gear groups are left on, while all
servers in the highest r−�g� gear groups are turned off. This
leaves up to 1 “fractional” gear group in which we turn off
some servers (chosen at random) to achieve a total of Nload

active servers. Alternatively the system can be configured for
full rather than fractional gearing. In this mode, we power
entire gear groups up and down, while always keeping at
least Nload servers up. Hence, for full gearing the number of
powered-up servers is �N�g�

r � rather than �Ng
r �.

3.6 Implementation status

The evaluation in the following section is based on our Sierra
prototype, which is implemented entirely at user level, with
the MDS and every chunk server running as a user-level
process. A client-side library exports object read(), write(),
delete() and create() calls. The core Sierra implementation
(chunk servers, MDS, client library) is 11 kLOC. The DVL
is 7.6 kLOC. There is an additional 17 kLOC of support code
(RPC libraries, etc.) NTFS is used as the local file system on
each chunk server and its lines of code are not included in
the above measurements.

Although the MDS is implemented as a deterministic
state machine we have not currently implemented MDS
replication; however, standard techniques exist for state ma-
chine replication and we are confident that the MDS could
be replicated if required.

3.7 Summary of tradeoffs and limitations

We summarize the tradeoffs described in this section and
the limitations of our approach. First, we had to redesign
the data layout to allow for the possibility of servers to be
off. The main tradeoff involved power savings on one hand
and rebuild speed and load distribution on the other hand.
Because of this tradeoff our method works best for large
clusters (hundreds of servers) and the effects of the tradeoff
become more pronounced for small clusters.

Second, we introduce a new service to the data center:
a distributed virtual log (DVL). This service absorbs any
writes that happen to a server that is powered down. Physi-
cally it is implemented as a short-term versioned store and it
can reside on dedicated servers, or co-located with the exist-
ing chunk stores. The DVL would be simpler if the underly-
ing chunk store file system were versioned, but ours (NTFS)
is not. As such, the DVL adds some complexity in terms of
lines of code and failure cases to the system. We hope it is
still conceptually simple, since the notion of a “log” is well-
understood and a distributed one is a rather natural extension
for the data center environment.

Third, we described new failure scenarios that can be han-
dled without introducing any new tradeoffs, and one failure
scenario that introduces a tradeoff between power savings
and availability. Specifically, when the system is already in
the lowest gear, failure of a single server can cause the last
active replica of a chunk to become temporarily unavailable
during this wakeup time (a window of seconds to minutes).
Depending on the workload characteristics and server failure
profiles, some deployments might choose never to go to the
lowest gear to avoid this tradeoff.

Fourth, the gear scheduler allows a spectrum of tradeoffs
that can be explored (e.g., predictive vs. reactive gear selec-
tion policies, gearing timescales in the order of minutes and
hours, and full vs. fractional gearing.) Several of these trade-
offs are shown in Figure 9(b). These are tradeoffs among
power savings, complexity of workload characterization and
ability of servers to rapidly switch on and off. We chose a
simple default mode that works well for our workloads.

4. Evaluation
In this section we answer the following questions. First, does
our gear scheduler work well? Second, what are the power
savings? Third, what is the impact on performance? Finally,
how does rebuild performance scale with the number of
servers, for the Sierra layout. Our evaluation is driven by
two sets of traces as well as microbenchmarks. We have
obtained load traces from Hotmail (Windows Live Mail)
and Windows Live Messenger. These are measurements of
I/O load at a 1-hour granularity for 1 week, aggregated over
thousands of servers as shown in Figure 1. The load traces
are used to measure how well the gear scheduler works and
expected power savings.

0%

10%

20%

30%

1 2 3 4 5 6

R
M

S/
m

ea
n

Number of training days

Hotmail
Messenger

(a) Normalized RMS over time

0%
20%
40%
60%
80%

100%

-2 -1 0 1 2 -2 -1 0 1 2

Hotmail Messenger

Fr
ac

tio
n

of
 ti

m
e

gpredicted - goptimal
(b) Distribution of gear selection error

Figure 8. Prediction accuracy

The load traces are not sufficiently fine-grained to mea-
sure performance on real hardware. For this, we have ob-
tained a small set of I/O traces which contain I/O requests to
e-mail messages stored on 8 Hotmail back-end servers over
a 48-hour period, starting at midnight (PDT) on Monday,
August 4, 2008. These I/O traces are from a different time
period than the Hotmail load traces, but represent the same
service. The I/O traces are taken at the block device level,
i.e., below the main memory buffer cache but above the stor-
age hardware (RAID). We map them onto our object-based
file system as detailed in Section 4.3. The overall read/write
ratio of these traces is 1.3 (i.e. slightly more reads). Approx-
imately 276 GiB of data were written and 460 GiB of data
were read from these servers during that time. The diurnal
pattern for these traces is shown in Figure 10.

4.1 Gear scheduler

We applied the simple “hour of day” load prediction algo-
rithm (see Section 3.5) to the Hotmail and Messenger load
traces. The load metric used was mean bytes transferred per
hour, since that is all we have available from this data. For
each workload, we have 7 days of data. At the end of each
day, we train the predictor using all the previous days’ data,
with equal weighting for all past days. We then test the pre-
dictor on the remaining days in the trace. The aim is to find
how quickly, and to what value, the error converges.

We measure error taking the root-mean-square (RMS)
of the difference between predicted and actual load. We
normalize this by the mean load during the test period to
give a scale-free measure of error. Figure 8(a) shows how the
error changes over time. For both Hotmail and Messenger,
the error is low (around 10% of the mean) even after a single
day of training and does not change significantly afterward.
Hence, even with this simple predictive method, the number

of active servers when using fractional gearing will always
be within 10% of the ideal.

When using full gearing, we can also measure how often
the predictor selects the wrong gear. For 3-way replication,
the difference between the correct gear for the load, and
the chosen gear based on predicted load, can range from -
2 to +2, since gear values range from 1 to 3. Figure 8(b)
shows how load prediction errors translate to gear selection
errors in this case. The histograms show the frequency of
occurrence of each value; perfect prediction would lead to
a single bar centered on zero. With Hotmail we achieve
this, i.e., the system always selects the correct gear, and for
Messenger it selects the correct gear 90% of the time.

4.2 Power

Figure 9(a) shows the analytical estimation of power con-
sumption of Sierra for the Hotmail and Messenger load
traces as a fraction of the baseline system. The estimation is
based on the number of servers expected to be turned off over
the week. To separate the effects of prediction and power
savings, here we use an “oracle” predictor that always pre-
dicts the correct gear, i.e., we correct the 10% misprediction
that occurs in Messenger (an incorrect gear selection could
either save more power — and have bad performance — or
could save less power than a correct one). The loggers are as-
sumed to be co-located with the servers. We are not allowed
to reveal the exact number of servers in the baseline system,
but it is all the Hotmail and Messenger servers (several thou-
sands) as first described in Section 2.

We show the power savings for both fractional and full
gearing, and for two different settings of the minimum gear
value: gmin = 1 and gmin = 2. Setting gmin to 2 increases
power consumption very slightly for Hotmail, and more for
Messenger. This is because, for Hotmail, the system stays
above gear 2 most of the time for load reasons, even when
gmin = 1. We also see that fractional gearing, by being finer-
grained, achieves significant power savings compared to full
gearing, as expected from the analysis in Section 3.5.

The results so far used gearing based on mean load per
hour, and with a maximum gear-shift frequency of once
per hour, since this is the finest granularity obtainable from
the load traces. However, from the Hotmail I/O traces we
are able to measure the effect of using the peak load met-
ric, and also of shifting gears more frequently. Figure 9(b)
shows the analytical estimate of power consumption for the
2-day Hotmail I/O traces, using the peak load metric with
the oracle predictor, full gearing and gmin = 1, and vary-
ing the timescale of prediction. At the 1-hour timescale, the
power consumption is 72% of the baseline system compared
to 69% predicted from the load traces. Higher power sav-
ings seem possible by gear-shifting frequently, e.g., once
per minute; however this requires frequent power state cy-
cling and also accurate fine-grained load prediction. It is not
clear whether such fine-grained prediction is possible: the
fine-grained traces only cover 48 hours which is insufficient

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Hotmail Messenger

Po
w

er
 c

on
su

m
ed

gmin=1, full gearing
gmin=2, full gearing
gmin=1, fractional gearing
gmin=2, fractional gearing

(a) From load traces

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 60 120 180 240

Po
w

er
 c

on
su

m
ed

 (%
 o

f b
as

el
in

e)

Time scale (min)
(b) From Hotmail I/O traces, with different gearing timescales

Figure 9. Power consumption

to evaluate this. All experiments in this paper use a 1-hour
granularity as the 7-day load traces show good predictability
at this granularity.

4.3 Performance on I/O traces

Our performance evaluation is based on replaying the Hot-
mail I/O traces on a Sierra system deployed on a small scale
cluster. Our experimental testbed consists of 31 identical
servers in 3 racks. Each rack has a Cisco Catalyst 3750E as
a Top-of-Rack (ToR) switch providing 1 Gbps ports for the
servers, and a 10 Gbps fiber uplink to a Cisco Nexus 5000.
The testbed is assigned 10 servers in each rack, plus an ex-
tra server in one of the racks on which we run the MDS.
Each server has two four-core 2.5 Ghz Intel Xeon proces-
sors, 16 GiB of RAM, a 1 TB system disk and a 1 TB disk
that holds the Sierra chunk files and log files. Each server
runs Windows Server 2008 Enterprise Edition, SP1.

Trace replay: We map the Hotmail I/O traces to Sierra
objects using virtual disks. Each block device in the trace
maps to a virtual disk, which corresponds to a unique object
ID in Sierra. The virtual disk object is then stored in Sierra
as a set of chunks corresponding to logical extents within
the disk. Thus, the trace replay mechanism converts an ac-
cess of <block device, logical block number, size in blocks>

 0

 10

 20

 30

 40

 50

 60

06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00

L
o
a
d

l
e
v
e
l

(
#
s
e
r
v
e
r
s
)

Time (4-5 August 2008)

Low gear

Up-shift+reclaim

Down-shift

Gear level
Peak load

Figure 10. Gear schedule for Hotmail I/O trace

to <object ID, offset in bytes, size in bytes>. The traces are
then split by virtual disk and replayed from multiple client
machines. Although both client and server machines have
plentiful RAM, we do not use it for caching in our experi-
ments, to match the traces available, which are taken below
the main memory buffer cache. We also disable prefetching
and write-back for the same reason.

Provisioning: For meaningful experimental results it is
important to correctly provision the system for the work-
load, i.e., chose the correct number of chunk servers. Over-
provisioning the system would increase the baseline sys-
tem’s power consumption unnecessarily, and thereby inflate
the relative power savings of Sierra. Under-provisioning the
system would also be meaningless because the system could
not sustain the peak load even with all servers powered up.
To calculate the number of chunk servers needed to support
a workload, we use the methodology based on the peak load
metric described in Section 3.5. Provisioning was based on
measured single-server performance (see Section 4.4 for a
description of the microbenchmarks used).

In addition to performance, we must also match the avail-
ability and capacity requirements of the workload. For avail-
ability, we replicate chunks on servers in three different fault
domains, i.e., racks. For capacity, we are limited by the to-
tal storage capacity of our servers, which is smaller than the
entirety of the virtual disks in the trace. However, it is suffi-
cient to store the specific chunks that are accessed during any
of our experimental runs, if we use a chunk size of 1 MiB.
Hence, for each experiment, we pre-create the chunks that
are accessed during the experiment, using a chunk size of
1 MiB. In practice a larger chunk size, e.g., 64 MiB is more
common [Ghemawat 2003].

For the Hotmail I/O traces this methodology resulted in
15 chunk servers to meet the performance requirement (5
in each rack). The trace replay clients are load balanced on
9 of the remaining machines (3 in each rack). For all the
performance experiments, we compared two configurations.
The Sierra configuration had the above 5 chunk servers

0

5

10

15

20

25

30

35

Low gear Up-shift+reclaim Down-shift

M
ea

n
re

sp
on

se
 ti

m
e

(m
s)

 RD Baseline RD Sierra WR Baseline WR Sierra Total Baseline Total Sierra

(a) Mean response time

0

100

200

300

400

500

600

Low gear Up-shift+reclaim Down-shift

99
th

 p
ct

ile
 re

sp
on

s e
tim

e
(m

s)

RD Baseline RD Sierra WR Baseline WR Sierra Total Baseline Total Sierra

(b) 99th percentile response time

Figure 11. Performance comparison for Hotmail I/O trace. The “transition” experiment is for a downward gear shift.

and 1 dedicated logger per rack. The Baseline configuration
was provisioned with the same total resources, i.e., 6 chunk
servers per rack and no loggers. In the Sierra configuration,
all 3 loggers are always left powered up to ensure that 3-way,
cross-rack replication is always possible. Due to the small
size of our testbed, the power cost of the dedicated loggers
is not amortized well and their power overhead is 6% over
that expected from Section 4.2 (which looked only at chunk
server power savings).

We did not have access to a power measurement kit (i.e.,
the servers did not have a watt-meter attached) and further-
more the servers were in a remote datacenter and we did not
have permission to turn them off. To emulate a server being
off we instruct the RPC layer of that server to drop all re-
ceived packets silently. This approach has the shortcoming
that it does not capture the time it takes to power down and
up a server, however we expect those times to be negligible
compared to the time a server stays off (at least 1 hour).

Trace segment selection: For our performance experi-
ments we selected three trace segments that represent the
worst case for three different aspects of Sierra. First we
chose the 1-hour period when the system was in the low-
est gear, and saw the highest peak load of all such periods.
The aim is to show the worst-case performance impact of
putting the system in the lowest gear. Second, we chose the
transition into highest gear when the amount of logged data
in the DVL was the highest, and the 1-hour period follow-
ing the transition. The aim here is to show the effect of an
up shift (i.e., turning servers on and rebalancing load) as
well as the performance impact of reclaiming logged data to
the chunk servers. Finally, we chose the downward transition
having the highest load in the minute immediately following
the transition, and replayed the trace from the transition until
the end of the minute. The aim here is to show the worst-case
impact of turning servers off. Figure 10 shows the load met-
ric for each hour of the Hotmail I/O trace, the gear chosen
by the oracle predictor for each hour, and the periods corre-

sponding to the three experiments1. All the experiments are
based on full gearing, which gives the largest possible gear
transitions; the lowest and highest gear levels are the same
for both full and fractional gearing. In all experiments we
pre-create the necessary system state, including logger state,
by first replaying the relevant preceding portions of the trace.

Request response times: Figure 11 shows the mean and
99th percentile (note the different scales on the two y-axes)
of performance of the baseline and Sierra configurations
during the three experiments. We show the performance of
read and write requests separately as well as the total per-
formance. We make several observations. First, given that
these are the worst three scenarios, the performance penalty
for Sierra is small. Second, the low gear experiment shows
that our provisioning and gear selection methodology is rea-
sonable; the performance of Sierra with 2/3 of the chunk
servers turned off is comparable to that of the baseline, i.e.,
all servers turned on. Third, the performance penalty is sig-
nificantly smaller for the 99th percentile, showing that Sierra
does not make the slow requests slower (Sierra writes are
sometimes slightly faster than in the baseline system because
they are sent to loggers which are optimized for writes.)

The performance penalty is slightly more pronounced for
the up-shift/reclaim experiment. This is due to performance
interference between the foreground workload and the re-
claim process, which is faster than it needs to be. Table 2
shows this long-term reclaim rate required for this work-
load as well as the actual reclaim rate achieved during the
up-shift/reclaim experiment. The long-term reclaim rate is
obtained by measuring the number of unique bytes logged
just before each up-shift in the 48-hour period, and summing

1 The “peak” load in the Hotmail I/O traces happens just after midnight
during a 2-hour period of background maintenance. Provisioning the system
for the maintenance peak would only improve the I/O response time of
background tasks. It would also artificially increase the baseline power
consumption and hence improve Sierra’s relative power savings. To avoid
this effect, we exclude this maintenance period when provisioning the
system, and keep the system in the highest gear during the window.

Total data logged in 48 hrs 166 GiB
Time in top gear 14 hrs
Required reclaim rate 3.37 MiB/s
Data reclaimed in 1 hour after up-shift 27 GiB
Reclaim rate achieved 7.7 MiB/s

Table 2. Reclaim statistics

primaries migrated in down-shift 98
Total migration time 1.3 s
Total # of requests 11532
of requests retrying 118
Average/worst retry penalty 9.8 / 74 ms
primaries migrated in up-shift 116
Total migration time 2.4 s
Total # requests 18618
number of requests retrying 152
Average/worst retry penalty 224 / 2168 ms

Table 3. Primary migration statistics

these values. This gives an upper bound on the amount of
data that needs to be reclaimed for those 48 hours. Although
all reclaim requests have background priority, we believe a
better control mechanism [Douceur 1999] could reduce the
rate to the long-term average. We note that, for this setup,
provisioning the loggers with 30 GiB of capacity is sufficient
to ensure all writes are absorbed without blocking.

Details on primary migration: Chunk group primaries
are migrated during down-shifts to maintain availability and
during up-shifts to rebalance load. After a primary migrates,
the first request from each client for that chunk group will
go to the old primary, fail, and be retried after re-fetching
metadata from the MDS. Subsequently it is cached at the
client and future requests do not pay the retry penalty.

Table 3 summarizes the migration statistics for the down-
shift and the up-shift experiments. The total migration time
is dominated by the time for the busiest primary to drain
its queue (i.e., complete outstanding requests) before the
new primary can begin accepting requests. This also deter-
mines the worst-case retry penalty. We could optimize this
by waiting for primaries to have short queues before migrat-
ing them, rather than starting them at a fixed time dictated
by the gear scheduler. However, given that so few requests
are affected we have not prioritized this optimization.

Metadata state size: We measured the amount of meta-
data for the longest experiment, the up-shift one. The meta-
data service had about 100 MiB of in-memory state, corre-
sponding to 4.6 million chunks in 320 chunk groups. This is
a memory requirement of 23 bytes per chunk or 320 KiB per
chunk group.

4.4 Microbenchmarks

The goal of this section is to measure, using microbench-
marks, the scalability of Sierra’s read/write performance as
well as the impact of layout on rebuild rates.

Single-server performance: This experiment establishes
a baseline single-server performance. First, we measure sin-
gle client streaming read and write bandwidth from a single
server in MiB/s using 64 KiB reads and writes to a 2.4 GiB
object (system chunk size is the default of 1 MiB). Sec-
ond, we measure random-access read and write performance
in IOPS (I/Os per second) by sending 100,000 I/Os to the
server. The client keeps 64 requests outstanding at all times.
Table 4 shows the results. Write have more variable perfor-
mance than reads due to inherent properties of NTFS.

Writes Reads
Bandwidth (MiB/s) 82/82/82 82/82/82
IOPS 144/179/224 129/137/147

Table 4. Single-server performance. The min/avg/max met-
ric is shown for 5 runs.

Multi-server performance: This experiment shows the
peak performance of our system when multiple servers and
clients are accessing data. Rack 1 is used for chunk servers.
Rack 2 is used for the clients. The metadata service is placed
on a machine in rack 1. 9 clients (each identical in setup to
the single one above, but r is 3 in this case) make read and
write requests to 9 chunk servers. Table 5 shows the results in
terms of aggregate server performance. Variance is measured
across clients. For all write experiments it is negligible. For
the streaming read experiment the client performance was
37–41 MiB/s. For the random-access read experiment the
client performance was 109–137 IOPS.

Writes Reads
Bandwidth (MiB/s) 96 (246) 348 (738)
IOPS 465 (537) 1152 (1233)

Table 5. Peak system performance. In brackets is the ideal
performance as nine times the performance of a single server
for reads, and a third of that for writes.

We observe that in all cases, write performance is about
a third of read performance as expected because of 3-way
replication. For the random-access workloads the servers’
disks become the bottleneck. All numbers in those cases are
close to the ideal. For streaming reads and writes, Sierra
gets only around a third of the expected bandwidth. This
is because of a well-known problem: lack of performance
isolation between concurrent streams. A mechanism like
Argon [Wachs 2007] would potentially be beneficial in our
case but we have not explored it.

Rebuild speed: Sierra’s power-aware layout provides
not only power savings but also rebuild parallelism when
a server fails permanently and its data must be rebuilt. To

100

150

200

250

300
bu

ild
 ra

te
 (M

B
/s

)

64 MB chunks

1 MB chunks

0

50

0 2 4 6 8

R
eb

Number of write servers

Figure 12. Rebuild rate as a function of cluster size

show the effect of this parallelism we ran a microbenchmark
measuring rebuild times while varying the cluster size N ,
which determines the rebuild parallelism. In all cases we
used 3-way replication, with data being read from 2N

3 nodes
and written in parallel to N

3 nodes. The write servers (being
fewer) are the bottleneck rather than the read servers, and
hence, Figure 12 shows the rebuild rate as a function of the
number of write servers.

Rebuild scales with the number of servers, showing the
importance of rebuild parallelism. Note that the single-server
performance is lower than the raw disk bandwidth due to
chunk creates (i.e., NTFS “create” system call) being the
bottleneck. We show performance for a small 1 MiB chunk
size (which was selected to accommodate the Hotmail I/O
trace’s capacity requirement on our testbed), and for a larger
64 MiB chunk size that amortizes better the overhead of the
chunk creates. With 8 write servers and 64 MiB chunks, and
no extra network optimizations, Sierra achieves a reasonable
rebuild performance of 296 MiB/s (1 hour per TB rebuilt, or
2.3 Gbps of cross-rack network bandwidth usage).

5. Related Work
Section 3 described the (non power-proportional) storage
systems that Sierra builds on [Azu 2009, Abd-El-Malek
2005, Ghemawat 2003, Saito 2004]. Here we contrast Sierra
with related work on power savings.

The DVL component of Sierra builds on write off-
loading [Narayanan 2008]. However, that work focused on
traditional RAID-based storage on individual servers. Other
previous work such as PARAID [Weddle 2007] (which first
introduces the notion of gears in this context) and power-
aware storage caching [Zhu 2005] are also based on enter-
prise storage. This previous work does not address the chal-
lenges of large data centers: providing power proportional-
ity in while maintaining scalability, availability, consistency,
and fault tolerance. Specifically, the Sierra DVL extends the
previous work on write off-loading with network awareness,
fast failure recovery, and asynchronous primary migration.

Work has been done on power-proportionality for read
workloads [Amur 2010]. Sierra handles general workloads
with read and writes. It is non-trivial to support writes while
maintaining availability, fault tolerance and consistency.
Achieving this through the design and implementation of
the DVL is one of our key technical contributions. Some
approaches rely on increasing the replication factor r, and
hence the capacity requirements of the system, to achieve
power proportionality [Amur 2010, Weddle 2007]. In addi-
tion to increasing capacity, these techniques come at the cost
of write performance — more copies need to be updated on
each write. This can result in more servers being provisioned
for the baseline system, increasing its power consumption.
Sierra achieves power-proportionality without increasing the
replication factor of the original system.

Popular Data Concentration (PDC) exploits spatial local-
ity by migrating hot data onto a small number of “hot” disks,
and spinning down the cold disks [Pinheiro 2004]. However,
when the cold data is accessed, there is a large latency in
waiting for a disk to spin up. PDC also unbalances the load
across disks, which means that the system must be over-
provisioned for performance, which increases the baseline
power consumption. Other work on analyzing effects of data
layout targets availability [Yu 2007]. Sierra’s layout builds
on that body of work and shows surprising effects of layout
on power-proportionality.

Current hardware-based approaches, such as CPU volt-
age scaling and multi-speed disks [Zhu 2005], do not of-
fer a wide enough range of power consumption scaling.
Sierra offers power proportionality through software, by
turning off entire servers, without requiring specific power-
proportionality support in hardware.

6. Conclusion and future work
Sierra is, to the best of our knowledge, the first power-
proportional distributed storage system for general read and
write workloads. It achieves power-proportionality in soft-
ware while maintaining the consistency, fault-tolerance and
availability of the baseline system. Analysis of load traces
from two large online services show significant power sav-
ings from exploiting diurnal load patterns, and a perfor-
mance evaluation on a small server cluster shows a modest
overhead in I/O response time.

We have identified several directions for future work.
First, work is needed to align methods for consolidating
computational tasks (e.g., virtualization) with the I/O load
consolidation that Sierra offers. Ideally the system should
also preserve locality while shifting gears, i.e., the co-
location of computation with the data it computes on. Sec-
ond, more thinking is needed to achieve power-proportionality
for optimistic concurrency control systems such as Ama-
zon’s Dynamo, which uses “sloppy quorums” [DeCandia
2007] and for Byzantine fault-tolerant systems.

7. Acknowledgments
We thank our shepherd Alistair Veitch, the anonymous re-
viewers, and Ant Rowstron, James Hamilton, Miguel Castro,
Zhe Zhang and Paul Barham for their feedback. We thank
Bruce Worthington and Swaroop Kavalanekar for the Hot-
mail I/O traces, Tom Harpel and Steve Lee for the Hotmail
and Messenger load traces, Dennis Crain, Mac Manson and
the MSR cluster folks for the hardware testbed.

References
[Azu 2009] Windows Azure Platform, October 2009. URL http:
//www.microsoft.com/azure.

[Abd-El-Malek 2005] Michael Abd-El-Malek, William V. Cour-
tright II, Chuck Cranor, Gregory R. Ganger, James Hendricks,
Andrew J. Klosterman, Michael Mesnier, Manish Prasad, Bran-
don Salmon, Raja R. Sambasivan, Shafeeq Sinnamohideen,
John D. Strunk, Eno Thereska, Matthew Wachs, and Jay J.
Wylie. Ursa Minor: versatile cluster-based storage. In Proc.
USENIX Conference on File and Storage Technologies (FAST),
December 2005.

[Amazon 2010] Amazon. Amazon EC2 spot instances,
April 2010. URL http://aws.amazon.com/ec2/
spot-instances/.

[Amur 2010] Hrishikesh Amur, James Cipar, Varun Gupta, Michael
Kozuch, Gregory Ganger, and Karsten Schwan. Robust and
flexible power-proportional storage. In Proc. Symposium on
Cloud Computing (SOCC), Indianapolis, IN, June 2010.

[Barroso 2007] Luiz André Barroso and Urs Hölzle. The case for
energy-proportional computing. IEEE Computer, 40(12):33–37,
2007.

[Chen 2008] Gong Chen, Wenbo He, Jie Liu, Suman Nath,
Leonidas Rigas, Lin Xiao, and Feng Zhao. Energy-aware server
provisioning and load dispatching for connection-intensive in-
ternet services. In Proc. Symposium on Networked Systems De-
sign and Implementation (NSDI), San Francisco, CA, 2008.

[Clark 2005] Christopher Clark, Keir Fraser, Steven Hand, Ja-
cob Gorm Hansen, Eric Jul, Christian Limpach, Ian Pratt, and
Andrew Warfield. Live migration of virtual machines. In Proc.
Symposium on Networked Systems Design and Implementation
(NSDI), Boston, MA, May 2005.

[DeCandia 2007] Giuseppe DeCandia, Deniz Hastorun, Madan
Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and
Werner Vogels. Dynamo: Amazon’s highly available key-value
store. In Proc. ACM Symposium on Operating Systems Princi-
ples (SOSP), October 2007.

[Douceur 1999] John R. Douceur and William J. Bolosky.
Progress-based regulation of low-importance processes. In Proc.
ACM Symposium on Operating Systems Principles (SOSP), Ki-
awah Island, SC, December 1999.

[Fan 2007] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre
Barroso. Power provisioning for a warehouse-sized computer.
In Proc. International Symposium on Computer architecture
(ISCA), San Diego, CA, 2007.

[Ghemawat 2003] Sanjay Ghemawat, Howard Gobioff, and Shun-
Tak Leung. The Google file system. In Proc. ACM Symposium

on Operating System Principles (SOSP), Lake George, NY, Oc-
tober 2003.

[Hamilton 2008] James Hamilton. Resource consumption shaping,
2008. URL http://perspectives.mvdirona.com/.

[Hamilton 2009] James Hamilton. Cost of power in large-scale data
centers, 2009. URL http://perspectives.mvdirona.
com/.

[Narayanan 2008] Dushyanth Narayanan, Austin Donnelly, and
Antony Rowstron. Write off-loading: Practical power manage-
ment for enterprise storage. In Proc. USENIX Conference on
File and Storage Technologies (FAST), San Jose, CA, February
2008.

[Oki 1988] Brian M. Oki and Barbara Liskov. Viewstamped
replication: A general primary copy method to support highly-
available distributed systems. In Proc. Symposium on Princi-
ples of Distributed Computing (PODC), Toronto, Canada, Au-
gust 1988.

[Pinheiro 2004] Eduardo Pinheiro and Ricardo Bianchini. Energy
conservation techniques for disk array-based servers. In Proc.
Annual International Conference on Supercomputing (ICS’04),
June 2004.

[Saito 2004] Yasushi Saito, Svend Frølund, Alistair Veitch, Arif
Merchant, and Susan Spence. FAB: building distributed enter-
prise disk arrays from commodity components. In Proc. Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), October 2004.

[Schneider 1990] Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. CSURV: Comput-
ing Surveys, 22, 1990.

[Stokely 2009] Murray Stokely, Jim Winget, Ed Keyes, Carrie
Grimes, and Benjamin Yolken. Using a market economy to
provision compute resources across planet-wide clusters. In
Proc. of the International Parallel and Distributed Processing
Symposium (IPDPS), pages 1–8, Rome, Italy, May 2009.

[van Renesse 2004] Robbert van Renesse and Fred B. Schneider.
Chain replication for supporting high throughput and availabil-
ity. In Proc. Symposium on Operating Systems Design and Im-
plementation (OSDI), pages 91–104, 2004.

[Wachs 2007] Matthew Wachs, Michael Abd-El-Malek, Eno
Thereska, and Gregory R. Ganger. Argon: performance insu-
lation for shared storage servers. In Proc. USENIX Conference
on File and Storage Technologies (FAST), 2007.

[Weddle 2007] Charles Weddle, Mathew Oldham, Jin Qian, An-
I Andy Wang, Peter Reiher, and Geuff Kuenning. PARAID: The
gear-shifting power-aware RAID. In Proc. USENIX Conference
on File and Storage Technologies (FAST’07), February 2007.

[Yu 2007] Haifeng Yu and Phillip B. Gibbons. Optimal inter-object
correlation when replicating for availability. In Proc. Symposium
on Principles of Distributed Computing (PODC), Portland, OR,
August 2007.

[Zhu 2005] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and
J. Wilkes. Hibernator: Helping disk arrays sleep through the
winter. In Proc. ACM Symposium on Operating Systems Princi-
ples (SOSP), Brighton, United Kingdom, October 2005.

