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Abstract
Much system software can be configured at compile time to
tailor it with respect to a broad range of supported hardware
architectures and application domains. A good example is the
Linux kernel, which provides more than 10,000 configurable
features, growing rapidly.

From the maintenance point of view, compile-time con-
figurability imposes big challenges. The configuration model
(the selectable features and their constraints as presented to
the user) and the configurability that is actually implemented
in the code have to be kept in sync, which, if performed man-
ually, is a tedious and error-prone task. In the case of Linux,
this has led to numerous defects in the source code, many of
which are actual bugs.

We suggest an approach to automatically check for
configurability-related implementation defects in large-scale
configurable system software. The configurability is extracted
from its various implementation sources and examined for
inconsistencies, which manifest in seemingly conditional
code that is in fact unconditional. We evaluate our approach
with the latest version of Linux, for which our tool detects
1,776 configurability defects, which manifest as dead/super-
fluous source code and bugs. Our findings have led to numer-
ous source-code improvements and bug fixes in Linux: 123
patches (49 merged) fix 364 defects, 147 of which have been
confirmed by the corresponding Linux developers and 20 as
fixing a new bug.
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1. Introduction
I know of no feature that is always needed. When we
say that two functions are almost always used together,
we should remember that "almost" is a euphemism for
"not". DAVID L. PARNAS [1979]

Serving no user value on its own, system software has
always been “caught between a rock and a hard place”. As a
link between hardware and applications, system software is
faced with the requirement for variability to meet the specific
demands of both. This is particularly true for operating
systems, which ideally should be tailorable for domains
ranging from small, resource-constrained embedded systems
over network appliances and interactive workstations up to
mainframe servers. As a result, many operating systems are
provided as a software family [Parnas 1979]; they can (and
have to) be configured at compile time to derive a concrete
operating-system variant.

Configurability as a system property includes two sepa-
rated – but related – aspects: implementation and configu-
ration. Kernel developers implement configurability in the
code; in most cases they do this by means of conditional com-
pilation and the C preprocessor [Spinellis 2008], despite all
the disadvantages with respect to understandability and main-
tainability (“#ifdef hell”) this approach is known for [Liebig
2010, Spencer 1992]. Users configure the operating system
to derive a concrete variant that fits their purposes. In simple
cases they have to do this by (un-)commenting #define di-
rectives in some global configure.h file; however, many op-
erating systems today come with an interactive configuration
tool. Based on an internal model of features and constraints,



this tool guides the user through the configuration process by
a hierarchical / topic-oriented view on the available features.
In fact, it performs implicit consistency checks with respect
to the selected features, so that the outcome is always a valid
configuration that represents a viable variant. In today’s op-
erating systems, this extra guidance is crucial because of the
sheer enormity of available features: eCos, for instance, pro-
vides more than 700 features, which are configured with (and
checked by) ECOSCONFIG [Massa 2002]; the Linux kernel is
configured with KCONFIG and provides more than 10,000 (!)
features. This is a lot of variability – and, as we show in this
paper, the source of many bugs that could easily be avoided
by better tool support.

Our Contributions
This article builds upon previous work. In [Sincero 2010], we
have introduced the extraction of a source-code variability
model from C Preprocessor (CPP)-based software, which rep-
resents a building block for this work. A short summary of
this approach is presented in Section 3.2.3. In this paper, we
extend that work by incorporating other sources of variability
and automatically (cross-) checking them for configurability-
related implementation defects in large-scale configurable
system software. We evaluate our approach with the latest
version of Linux. In summary, we claim the following contri-
butions:

1. It is the first work that shows the problem with the
increasing configurability in system software that causes
serious maintenance issues. (Section 2.2)

2. It is the first work that checks for configurability-related
implementation defects under the consideration of both
symbolic and logic integrity. (Section 3.1)

3. It presents an algorithm to effectively slice very large
configuration models, which are commonly found in
system software. This greatly assists our crosschecking
approach. (Section 3.2.2)

4. It presents a practical and scalable tool chain that has
detected 1,776 configurability-related defects and bugs in
Linux 2.6.35; for 121 of these defects (among them 22
confirmed new bugs) our fixes have already been merged
into the mainline tree. (Section 4)

In the following, we first analyze the problem in further detail
before presenting our approach in Section 3. We evaluate
and discuss our approach in Section 4 and Section 5, respec-
tively, and discuss related work in Section 6. The problem
of configurability-related defects will be introduced in the
context of Linux, which will also be the case study used
throughout this paper. Our findings and suggestions, how-
ever, also apply to other compile-time configurable system
software.

2. Problem Analysis
Linux today provides more than 10,000 configurable fea-
tures, which is a lot of variability with respect to hardware
platforms and application domains. The possibility to leave
out functionality that is not needed (such as x86 PAE support
in an Atom-based embedded system) and to choose between
alternatives for those features that are needed (such as the
default IO scheduler to use) is an important factor for its on-
going success in so many different application and hardware
domains.

2.1 Configurability in Linux
The enormous configurability of the Linux kernel demands
dedicated means to ensure the validity of the resulting Linux
variants. Most features are not self-contained; instead, their
possible inclusion is constrained by the presence or absence
of other features, which in turn impose constraints on further
features, and so on. In Linux, variant validity is taken care of
by the KCONFIG tool chain, which is depicted in Figure 1:

Ê Linux employs the KCONFIG language to specify its con-
figurable features together with their constraints. In ver-
sion 2.6.35 a total of 761 Kconfig files with 110,005 lines
of code define 11,283 features plus dependencies. We call
the thereby specified variability the Linux configuration
space.

The following KCONFIG lines, for instance, describe the
(optional) Linux feature to include support for hot CPU
plugging in an enterprise server:
config HOTPLUG_CPU

bool "Support for hot-pluggable CPUs"

depends on SMP && HOTPLUG

&& SYS_SUPPORTS_HOTPLUG_CPU

The HOTPLUG_CPU feature depends on general support for
hot-pluggable hardware and must not be selected in a single-
processor system.

Ë The KCONFIG configuration tool implicitly enforces all
feature constraints during the interactive feature selection
process. The outcome is, by construction, the description
of a valid Linux configuration variant.

Technically, the output is a C header file (autoconf.h) and
a Makefile (auto.make) that define a CONFIG_<FEATURE>

preprocessor macro and make variable for every selected
KCONFIG feature:
#define CONFIG_HOTPLUG_CPU 1

#define CONFIG_SMP 1

It’s a convention that all and only KCONFIG flags are prefixed
with CONFIG_.

Ì Features are implemented in the Linux source base.
Whereas some coarse-grained features are enforced by in-
cluding or excluding whole compilation units in the build
process, the majority of features are enforced within the
source files by means of the conditional compilation with
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Figure 1. Linux build process (simplified).

the C preprocessor. A total of 27,166 source files contain
82,116 #ifdef blocks. We call the thereby implemented
variability the Linux implementation space.

Í The KBUILD utility drives the actual variant compilation
and linking process by evaluating auto.make and embed-
ding the configuration variant definition autoconf.h into
every compilation unit via GCC’s “forced include”1 mech-
anism. The result of this process is a concrete Linux im-
plementation variant.

2.2 The Issue
Overall, the configurability of Linux is defined by two sep-
arated, but related models: The configuration space defines
the intended variability, whereas the implementation space
defines the implemented variability of Linux. Given the size
of both spaces – 110 kloc for the configuration space and
12 mloc for the implementation space in Linux 2.6.35 –, it
is not hard to imagine that this is prone to inconsistencies,
which manifest as configurability defects, many of which are
bugs. We have identified two types of integrity issues, namely
symbolic and logic, which we introduce in the following by
examples from Linux:

Consider the following change, which corrects a simple
feature misnaming (detected by our tool and confirmed as a
bug) in the file kernel/smp.c2:

diff --git a/kernel/smp.c b/kernel/smp.c

--- a/kernel/smp.c

+++ b/kernel/smp.c

-#ifdef CONFIG_CPU_HOTPLUG

+#ifdef CONFIG_HOTPLUG_CPU

Patch 1. Fix for a symbolic defect

The issue, which was present in Linux 2.6.30, is an example
of a symbolic integrity violation; the implementation space
references a feature that does not exist in the configuration

1 implemented by the -include command-line switch
2 Shown in unified diff format. Lines starting with -/+ are being re-
moved/added

spaces, so the actual implementation of the HOTPLUG_CPU

feature is incomplete. This bug remained undetected in the
kernel code base for more than six months. We cannot claim
credit for detecting this particular bug (it had been reported
to the respective developer just before we submitted our
patch); however, we have found 116 similar defects caused
by symbolic integrity violation that have been confirmed as
new.

A symbolic integrity violation indicates a configuration–
implementation space mismatch with respect to a feature
identifier. However, consistency issues also occur at the level
of feature constraints. Consider the following fix, which fixes
what we call a logic integrity violation:
diff --git a/arch/x86/include/asm/mmzone_32.h

b/arch/x86/include/asm/mmzone_32.h

--- a/arch/x86/include/asm/mmzone_32.h

+++ b/arch/x86/include/asm/mmzone_32.h

@@ -61,11 +61,7 @@ extern s8 physnode_map[];

static inline int pfn_to_nid(unsigned long pfn)

{

-#ifdef CONFIG_NUMA

return((int) physnode_map[(pfn)

/ PAGES_PER_ELEMENT]);

-#else

- return 0;

-#endif

}

/*

Patch 2. Fix for a logical defect

The patch itself does not look too complicated – the partic-
ularities of the issue it fixes stem from the context: In the
source, the affected pfn_to_nid() function is nested within
a larger code block whose presence condition is #ifdef

CONFIG_DISCONTIGMEM. According to the KCONFIG model,
however, the DISCONTIGMEM feature depends on the NUMA fea-
ture, which means that it also implies the selection of NUMA
in any valid configuration. As a consequence, the #ifdef

CONFIG_NUMA is superfluous; the #else branch is dead and
both are removed by the patch. The patch has been confirmed
as fixing a new defect by the respective Linux developers
and is currently processed upstream for final acceptance into
mainline Linux.

Compared to symbolic integrity violations, logic integrity
violations are generally much more difficult to analyze and
fix. So far we have fixed 38 logic integrity violations that
have been confirmed as new defects.

Note that Patch 2 does not fix a real bug – it only improves
the source-code quality of Linux by removing some dead
code and superfluous #ifdef statements. Some readers might
consider this as “less relevant cosmetical improvement”;
however, such “cruft” (especially if it contributes to “#ifdef



version features #ifdef blocks source files

2.6.12 (2005) 5338 57078 15219
2.6.20 7059 62873 18513
2.6.25 8394 67972 20609
2.6.30 9570 79154 23960
2.6.35 (2010) 11223 84150 28598

relative growth (5 years) 110% 47% 88%

Table 1. Growth of configurability in Linux

hell”) causes long-term maintenance costs and impedes the
general accessibility of the source.

2.3 Problem Summary
Overall, we find 1,316 symbolic + 460 logic integrity viola-
tions in Linux 2.6.35 – numbers that speak for themselves.
The situation becomes more severe every day, given how
quickly Linux is growing: Within the last five years, the
number of configuration-conditional blocks in the source
(#if blocks that test for some KCONFIG item) has grown by
around fifty percent, the number of features (KCONFIG items)
and source files have practically doubled (Table 1).

We think that configurability as a system property has to
be seen as a significant (and so far underestimated) cause of
software defects in its own respect.

3. The Approach
As pointed out in Section 2.2, many configurability-related
defects are caused by inconsistencies that result from the fact
that configurability is defined by two (technically separated,
but conceptually related) models: the configuration space and
the implementation space. The general idea of our approach
is to extract all configurability-related information from
both models into a common representation (a propositional
formula), which is then used to cross-check the variability
exposed within and across both models in order to find
inconsistencies. We call these inconsistencies configurability
defects:

A configurability defect (short: defect) is a
configuration-conditional item that is either dead
(never included) or undead (always included) un-
der the precondition that its parent (enclosing
item) is included.

Examples for items in Linux are: KCONFIG options, build
rules, and (most prominent) #ifdef blocks. The CONFIG_NUMA
example discussed in Section 2.2 (see Figure 2) bears two
defects in this respect: Block2 is undead and Block3 is dead.
Defects can be further classified as:

Confirmed – a defect that has been confirmed as uninten-
tional by the corresponding developers. If the defect has
an effect on the binary code of at least one Linux imple-
mentation variant, we call it a bug.

Rule violation – a defect that, even though it breaks a gen-
erally accepted development rule, has been confirmed as
intentional by the corresponding developers.

Patch 1 discussed in Section 2.2 fixes a bug, Patch 2 a
confirmed defect. In the case of Linux a rule violation is
usually the use of the CONFIG_ prefix for preprocessor flags
that are not (yet) defined by KCONFIG. We will discuss the
source of rule violations more thoroughly in Section 5.1.

3.1 Challenges in Analyzing Configurability
Consistency – “What’s wrong with GREP?”

Since version 2.6.23, Linux has included the (AWK/GREP-
based) script checkkconfigsymbols.sh. This script is sup-
posed to be used by maintainers to check for referential in-
tegrity between the KCONFIG model and the source code
before committing their changes.

However, for Linux 2.6.30 this script reports 760 issues,
among them the CONFIG_CPU_HOTPLUG issue discussed in
Section 2.2, which remained in the kernel for more than
six months. Apparently, kernel maintainers do not use this
script systematically. While we can only speculate why this
is the case, we have identified a number of shortcomings:

Accuracy. The output is disturbed by many false positives,
defect reports that are not valid, but caused by some
CONFIG_ macros being mentioned in a historical comment.
We consider this as a constant annoyance that hinders the
frequent employment of the script.

Performance. The script can only be applied on the com-
plete source tree. On reasonable modern hardware (Intel
quadcore with 2.83 GHz) it takes over 7 minutes until
the output begins. We consider this as too long and too
inflexible for integration into the daily incremental build
process.

Coverage. Despite its verbosity, the script misses many valid
defects. False negatives are caused, on the one hand, by
logic integrity issues, like the CONFIG_NUMA example from
Figure 2, as logic integrity is not covered at all. However,
even many referential integrity issues are not detected
– the script does not deal well with KCONFIG’s tristate
options (which are commonly used for loadable kernel
modules). We consider this as a constant source of doubt
with respect to the script’s output.

The lack of accuracy causes a lot of noise in the output.
This, and the fact that the script cannot be used during
incremental builds, renders the script barely usable. Most
of these shortcomings come from the fact that it does not
actually parse and analyze the expressed variability, but
just employs regular expressions to cross-match CONFIG_

identifiers. We conclude that the naïve GREP-based approach
is (too) limited in this respect and that this problem has not
been considered seriously in the past.
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dead? sat(C ∧ I ∧ BlockN )

undead? sat(C ∧ I ∧ ¬BlockN

∧ parent(BlockN ))

configurability defects

Figure 2. Our approach at a glance: The variability constraints defined by both spaces are extracted separately into propositional
formulas, which are then examined against each other to find inconsistencies we call configurability defects.

3.2 Our Solution
Essential for the analysis of configurability problems is a
common representation of the variability that spreads over
different software artifacts. The idea is to individually convert
each variability source (e.g., source files, KCONFIG, etc.)
to a common representation in form of a sub-model and
then combine these sub-models into a model that contains
the whole variability of the software project. This makes it
possible to analyze each sub-model as well their combination
in order to reveal inconsistencies across sub-models.

Most of the constructs that model the variability both in
the configuration and implementation spaces can be directly
translated to propositional logic; therefore, propositional
logic is our abstraction means of choice. As a consequence,
the detection of configuration problems boils down to a
satisfiability problem.

Linux (and many other systems) keep their configuration
space (C) and their implementation space (I) separated. The
variability model (V) can be represented by the following
boolean formula:

V = C ∧ I (1)

V 7→ {0, 1} is a boolean formula over all features of the
system; C and I are the boolean formulas representing the
constraints of the configuration and implementation spaces,
respectively. Properly capturing and translating the variability
of different artifacts into the formulas C and I is crucial for
building the complete variability model V . Once the model V
is built we use it to search for defects.

With this model, we validate the implementation for
configurability defects, that is, we check if the conditions
for the presence of the block (BlockN ) are fulfillable in the

model V . For example, consider Figure 2: The formula shown
for dead blocks is satisfiable for Block1 and Block2, but
not for Block3. Therefore, Block3 is considered to be dead;
similarly the formula for undead blocks indicates that Block2
is undead.

3.2.1 Challenges
In order to implement the solution sketch described above in
practice for real-world large-scale system software, we face
the following challenges:

Performance. As we aim at dealing with huge code bases,
we have to guarantee that our tools finish in a reasonable
amount of time. More importantly, we also aim at sup-
porting programmers at development time when only a
few files are of interest. Therefore, we consider the effi-
cient check for variability consistency during incremental
builds essential.

Flexibility. Projects that handle thousands of features will
eventually contain desired inconsistencies with respect to
their variability. Gradual addition or removal of features
and large refactorings are examples of efforts that may
lead to such inconsistent states within the lifetime of a
project. Also, evolving projects may change their require-
ments regarding their variability descriptions. Therefore,
a tool that checks for configuration problems should be
flexible enough to incorporate information about desired
issues in order to deliver precise and useful results; it
should also minimize the number of false positives and
false negatives.



Require: S initialized with an initial set of items
1: R = S
2: while S 6= ∅ do
3: item = S.pop()
4: PC = presenceCondition(item)
5: for all i such that i ∈ PC do
6: if i /∈ R then
7: S.push(i)
8: R.push(i)
9: end if

10: end for
11: end while
12: return R

Figure 3. Algorithm for configuration model slicing

In order to achieve both performance and flexibility, the im-
plementation of our approach needs to take the particularities
of the software project into account. Moreover, the preci-
sion of the configurability extraction mechanism has direct
a impact on the rate of false positive and false negative re-
ports. As many projects have developed their own, custom
tools and languages to describe configuration variability, the
configurability extraction needs to be tightly tailored.

In the following sections, we describe how we have
approached these challenges to achieve good performance,
flexibility, and, at the same time, a low number of false
positives and false negatives.

3.2.2 Configuration Space
There are several strategies to convert configuration space
models into boolean formulas [Benavides 2005, Czarnecki
2007]. However, due to the size of real models – the KCONFIG
model contains more than 10,000 features –, the resulting
boolean formulas become very complex. The search for a
solution to problems that use such formulas may become
intractable.

Therefore, we have devised an algorithm that implements
model slicing for KCONFIG. This allows us to generate sub-
models from the original model that are smaller than the
complete model. To illustrate, suppose we want to check if
a specific block of the source code can be enabled by any
valid user configuration. This is expressed by the satisfiability
of the formula V ∧ BlockN . With a full model, the term V
would contain all user-visible features as logical variables; for
the Linux kernel it would have more than 10,000 variables.
Nevertheless, not all features influence the solution for this
specific problem. The key challenge is to find a sufficient –
and preferably minimal – subset of features that can possibly
influence the selection of the code block under analysis.

Our slicing algorithm for this purpose is depicted in
Figure 3. The goal is to find the set of configuration items that
can possibly affect the selection of one or more given initial
items. (In our tool, which we will present in Section 4.1, this
initial set of items will be taken from the #ifdef expressions.)

The basic idea is to check the presence conditions of each
item for additional relevant items. Both direct and indirect
dependencies from the initial set of features are thus taken
into account such that the resulting set contains all features
that can influence the features in the initial set.

In the first step (Line 1) the resulting set R is initial-
ized with the list of input features. Then, the algorithm it-
erates until the working stack S is empty. In each itera-
tion (Lines 2–11), a feature is taken from the stack and
its presence condition is calculated through the function
presenceCondition(feature), which returns a boolean for-
mula of the form feature → ϕ. This formula represents the
condition under which the feature can be enabled; ϕ is a
boolean formula over the available features. Then, all fea-
tures that appear in ϕ and have not already been processed
(Line 6), are added to the working stack S and the result set
R. This algorithm always terminates; in the worst case, it
will return all features and the slice will be exactly like the
original model.

To implement our algorithm for Linux, we also have to
implement the function presenceCondition() that takes the
semantic details of the KCONFIG language into account. In
a nutshell, the KCONFIG language supports the definitions
of five types of features. Moreover, the features can have
a number of attributes like prompts, direct and reverse de-
pendencies, and default values. The presence condition of
a feature is the set of conditions that must be met, so that
either the user can select it or a default value is set automati-
cally. Consider the following feature defined in the KCONFIG
language:
config DISCONTIGMEM

def_bool y

depends on (!SELECT_MEMORY_MODEL &&

ARCH_DISCONTIGMEM_ENABLE) ||

DISCONTIGMEM_MANUAL

The presence condition for the feature DISCONTIGMEM is sim-
ply the selection of the feature itself and the expression of
the depends on option. If a feature has several definitions of
prompts and defaults, the feature implies the disjunction of
the condition of each option that control its selection. The
formal semantics of the KCONFIG language has been stud-
ied elsewhere [Berger 2010, Zengler 2010]; such formalisms
describe in detail how to correctly derive the presence condi-
tions.

3.2.3 Implementation Space
Many techniques [Baxter 2001, Hu 2000] have been proposed
to translate the CPP semantics to boolean formulas. However,
for our approach, we need to consider the language features
of CPP that implement conditional compilation only. There-
fore we devised an algorithm [Sincero 2010] that is tailored
in this respect in order to be precise and have good perfor-
mance. In short, our algorithm generates a boolean formula
that describes a source file by means of its conditional com-



pilation structures; it therefore examines the CPP directives
#ifdef, #ifndef, #if, #elif, #else, which are the con-
structs responsible for conditional compilation. As result, we
receive a formula that describes the presence conditions for
each conditional block. It thereby includes all flags (features)
that appear in any conditional compilation expression as a
logical variable. We build the presence condition PC of the
conditional block bi as follows:

PC(bi) = expr(bi)∧noPredecessors(bi)∧parent(bi) (2)

Let bi be a conditional block. In order for this block to be
selected, it is required that its expression expr(bi) evalu-
ates to true, in #elif cascades none of its predecessors are
selected noPredecessors(bi), and for nested blocks, its en-
closing #ifdef block parent(bi) is selected. If all these con-
ditions are met, then CPP will necessarily select this block.
Additionally, also the reverse is true: if the CPP selects the
block, all these presence conditions need to hold. This results
in a biimplication: bi ↔ PC(bi). Therefore, the formula for
a file with several blocks can be built as follows:

Fu(~f,~b) =
∧

i=1..m

bi ↔ PC(bi) (3)

where ~f is a vector containing all flags present in the
file, and ~b is a vector containing a variable for each
block of the file. An example is shown on the right
hand side of Figure 2: in the upper part we show the
source code, and in the lower part we show the generated
formula by our algorithm; note that in this example
Fu([DISCONTIGMEM, NUMA], [Block1, Block2, Block3]) =
PC(Block1) ∧ PC(Block2) ∧ PC(Block3) = I

3.2.4 Crosschecking Among Variability Spaces
Our approach converts the different representations of vari-
ability to a common format so that we can check for incon-
sistencies, the configurability defects. Defects appear in two
ways, either as dead, that is, unselectable blocks, or undead,
that is, always present blocks. Both kinds of defects indicate
code that is only seemingly conditional. They can be found
within single models as presented in the previous two sections
in isolation as well as across multiple models.

Within a single model we have implementation-only
defects, which represent code blocks that cannot be se-
lected regardless of the systems’ selected features; the struc-
ture of the source file itself contains contradictions that
impede the selection of a block. This can be determined
by checking the satisfiability of the formula sat(bi ↔
PC(bi)). Configuration-only defects represents features that
are present in the configuration-space model but do not ap-
pear in any valid configuration of the model, which means
that the presence condition of the feature is not satisfiable.
We can check for such defects by solving: sat(feature →
presenceCondition(feature)).

KConfig
files

config HOTPLUG_CPU
  bool "Support for ..."
  depends on SMP && ...

DEFECT
REPORTS
defect
reports

undertaker

CPP
Parser

SAT
Engine

KConfig
Parser

crosscheck

#ifdef CONFIG_HOTPLUG_CPU
...
#endif

Linux
source

Figure 4. Principle of Operation

Across multiple models we have configuration-
implementation defects, which occur when the rules
from the configuration space contradict rules from the
implementation space. We check for such defects by
solving sat((bi ↔ PC(bi)) ∧ V). Referential defects are
caused by a missing feature (m) that appears in either the
configuration or the implementation space only. That is,
sat((bi ↔ PC(bi))∧V ∧¬(m1∨· · ·∨mn)) is unsatisfiable.

Implementation-only defects have already been addressed
in [Sincero 2010]; this paper focuses on the detection
of configuration-implementation and referential defects in
Linux. The defect analysis can be done using the dead and
undead formulas as shown in the center of Figure 2.

We categorize all identified defects as either logic or
symbolic. Logic defects are those that can only be found by
determining the satisfiability of a complex boolean formula.
Symbolic defects belong to a sub-group of referential defects
where the expression of the analyzed block exp(bi) is an
atomic formula.

4. Evaluation
In order to evaluate our approach, we have developed a
prototype tool for Linux and a workflow to submit our
results to the kernel developers. We started submitting our
first patches in February 2010, at which time Linux version
2.6.33 has just been released. Most of our patches entered
the mainline kernel tree during the merge window of version
2.6.36. In the following, we describe our tool and summarize
the results.

4.1 Implementation for Linux
We named our tool UNDERTAKER, because its task is to iden-
tify (and eventually bury) dead and undead CPP-Blocks. Its ba-
sic principle of operation is depicted in Figure 4: The different
sources of variability are parsed and transformed into proposi-
tional formulas. For CPP parsing, we use the BOOST::WAVE3

parsing library; for proper parsing of the Kconfig files, we
have hooked up in the original Linux KCONFIG implementa-
tion. The outcome of these parsers is fed into the crosscheck-

3 http://www.boost.org

http://www.boost.org


ing engine as described in Section 3.2.4 and solved using
the PICOSAT4 package. The tool itself is published as Free
Software and available on our website.5

Our tool scans each .c and .h file in the source tree
individually. Unlike the script checkkonfigsymbols.sh as
discussed in Section 3.1, this allows developers to focus
on the part of the source code they are currently work-
ing on and to get instant results for incremental changes.
The results come as defect reports per file: For each file
all configurability-related CPP blocks are analyzed for sat-
isfiability, which yields the defect types described in the
previous section. For instance, the report produced for the
configuration-implementation defect from Figure 2 looks like
this:

Found Kconfig related DEAD in arch/parisc/include/asm/mmzone.h,

line 40: Block B6 is unselectable, check the SAT formula.

Based on this information, the developer now revisits the
KCONFIG files. The basis for the report is a formula that is
falsified by our SAT solver. For this particular example the
following formula was created:

1 #B6:arch/parisc/include/asm/mmzone.h:40:1:logic:undead

2 B2 &
3 !B6 &

4 (B0 <-> !_PARISC_MMZONE_H) &
5 (B2 <-> B0 & CONFIG_DISCONTIGMEM) &
6 (B4 <-> B2 & !CONFIG_64BIT) &
7 (B6 <-> B2 & !B4) &
8 (B9 <-> B0 & !B2) &

9 (CONFIG_64BIT -> CONFIG_PA8X00) &
10 (CONFIG_ARCH_DISCONTIGMEM_ENABLE -> CONFIG_64BIT) &
11 (CONFIG_ARCH_SELECT_MEMORY_MODEL -> CONFIG_64BIT) &
12 (CONFIG_CHOICE_11 -> CONFIG_SELECT_MEMORY_MODEL) &
13 (CONFIG_DISCONTIGMEM -> !CONFIG_SELECT_MEMORY_MODEL &

CONFIG_ARCH_DISCONTIGMEM_ENABLE | CONFIG_DISCONTIGMEM_MANUAL) &
14 (CONFIG_DISCONTIGMEM_MANUAL -> CONFIG_CHOICE_11 &

CONFIG_ARCH_DISCONTIGMEM_ENABLE) &
15 (CONFIG_PA8X00 -> CONFIG_CHOICE_7) &
16 (CONFIG_SELECT_MEMORY_MODEL -> CONFIG_EXPERIMENTAL |

CONFIG_ARCH_SELECT_MEMORY_MODEL)

This formula can be deciphered easily by examining its parts
individually. The first line shows an “executive summary” of
the defect; here, Block B6, which starts in Line 40 in the
file arch/parisc/include/asm/mmzone.h, inhibits a logical
configuration defect in form of a block that cannot be unse-
lected (“undead”). Lines 4 to 8 show the presence conditions
of the corresponding blocks (cf. Section 3.2.3 and [Sincero
2010]); they all start with a block variable and by construc-
tion cannot cause the formula to be unsatisfiable. From the
structure of the formula, we see that Block B2 is the enclos-
ing block. Lines 9ff. contain the extracted implications from
KCONFIG (cf. Section 3.2.2). In this case, it turns out that the
KCONFIG implications from Line 9 to 16 show a transitive
dependency from the KCONFIG item CONFIG_DISCONTIGMEM

(cf. Block B2, Line 5) to the item CONFIG_64BIT (cf. Block
B4, Line 6). This means that the KCONFIG selection has no
impact on the evaluation of the #ifdef expression and the

4 http://fmv.jku.at/picosat/
5 http://vamos.informatik.uni-erlangen.de/trac/undertaker/

code can thus be simplified. We have therefore proposed the
following patch to the Linux developers6:

1 diff --git a/arch/parisc/include/asm/mmzone.h b/arch/parisc/include/

asm/mmzone.h

2 --- a/arch/parisc/include/asm/mmzone.h

3 +++ b/arch/parisc/include/asm/mmzone.h

4 @@ -35,6 +35,1 @@ extern struct node_map_data node_data[];

5

6 -#ifndef CONFIG_64BIT

7 #define pfn_is_io(pfn) ((pfn & (0xf0000000UL >> PAGE_SHIFT)) == (0

xf0000000UL >> PAGE_SHIFT))

8 -#else

9 -/* io can be 0xf0f0f0f0f0xxxxxx or 0xfffffffff0000000 */

10 -#define pfn_is_io(pfn) ((pfn & (0xf000000000000000UL >> PAGE_SHIFT))

== (0xf000000000000000UL >> PAGE_SHIFT))

11 -#endif

Please note that this is one of the more complicated
examples. Most of the defects reports have in fact only a
few lines and are much easier to comprehend.

Results. Table 2 (upper half) summarizes the defects that
UNDERTAKER finds in Linux 2.6.35, differentiated by sub-
system. When counting defects in Linux, some extra care
has to be taken with respect to architectures: Linux employs
a separate KCONFIG-model per architecture that may also
declare architecture-specific features. Hence, we need to run
our defect analysis over every architecture and intersect the
results. This prevents us from counting, for example, MIPS-
specific blocks of the code as dead when compiling for x86.
An exception of this rule is the code below arch/, which is
architecture-specific by definition and checked against the
configuration model of the respective architecture only.

Most of the 1,776 defects are found in arch/ and
drivers/, which together account for more than 75 percent
of the configurability-related #ifdef-blocks. For these sub-
systems, we find more than three defects per hundred #ifdef-
blocks, whereas for all other subsystems this ratio is below
one percent (net/ below two percent). These numbers sup-
port the common observation (e.g., [Engler 2001]) that “most
bugs can be found in driver code”, which apparently also
holds for configurability-related defects. They also indicate
that the problems induced by “#ifdef-hell” grow more than
linearly, which we consider as a serious issue for the increas-
ing configurability of Linux and other system software.

Even though the majority of defects (74%) are caused by
symbolic integrity issues, we also find 460 logic integrity vi-
olations, which would be a lot harder to detect by “developer
brainpower”.

Performance. We have evaluated the performance of our
tool with Linux 2.6.35. A full analysis of this kernel processes
27,166 source files with 82,116 configurability-conditional
code blocks. This represents the information from the im-
plementation space. The configuration space provides 761
KCONFIG files defining 11,283 features.

A full analysis that produces the results as shown in Table 2
takes around 15 minutes on a modern Intel quadcore with
2.83 GHz and 8 GB RAM. However, the implementation

6 http://lkml.org/lkml/2010/5/12/202

http://fmv.jku.at/picosat/
http://vamos.informatik.uni-erlangen.de/trac/undertaker/
http://lkml.org/lkml/2010/5/12/202


subsystem #ifdefs logic symbolic total
arch/ 33757 345 581 926
drivers/ 32695 88 648 736
fs/ 3000 4 13 17
include/ 7241 6 11 17
kernel/ 1412 7 2 9
mm/ 555 0 1 1
net/ 2731 1 49 50
sound/ 3246 5 10 15
virt/ 53 0 0 0
other subsystems 601 4 1 5∑

85291 460 1316 1776
fix proposed 150 (1) 214 (22) 364 (23)
confirmed defect 38 (1) 116 (20) 154 (21)
confirmed rule-violation 88 (0) 21 (2) 109 (2)
pending 24 (0) 77 (0) 101 (0)

Table 2. Upper half: #ifdef blocks and defects per subsys-
tem in Linux version 2.6.35; Lower half: acceptance state of
defects (bugs) for which we have submitted a patch

< 0.5 s 93.69%
< 5 s 99.65%

< 30 s 100%

Figure 5. Processing time for 27,166 Linux source files

still leaves a lot of room for optimization: Around 70 percent
of the consumed CPU time is system time, which is mostly
caused by the fact that we fork() the SAT solver for every
single #ifdef block.

Despite this optimization potential, the runtime of UNDER-
TAKER is already appropriate to be integrated into (much
more common) incremental Linux builds. Figure 5 depicts
the file-based runtime for the Linux source base: Thanks to
our slicing algorithm, 94 percent of all source files are ana-
lyzed in less than half a second; less than one percent of the
source files take more than five seconds and only four files
take between 20 and 30 seconds. The upper bound (29.1 sec-
onds) is caused by kernel/sysctl.c, which handles a very
high number of features; changes to this file often require a
complete rebuild of the kernel anyway. For an incremental
build that affects about a dozen files, UNDERTAKER typically
finishes in less than six seconds.

4.2 Evaluation of Findings
To evaluate the quality of our findings, we have given our
defect reports to two undergraduate students to analyze them,
propose a change, and submit the patch upstream to the
responsible kernel maintainers. Figure 6 depicts the whole
workflow.

The first step is defect analysis: The students have to
look up the source-code position for which the defect is
reported and understand its particularities, which in the
case of logical defects (as in the CONFIG_NUMA example
presented in Figure 2) might also involve analyzing KCONFIG
dependencies and further parts of the source code. This

information is then used to develop a patch that fixes the
defect.

Based on the response to a submitted patch, we improve
and resubmit and finally classify it (and the defects it fixes)
in two categories: accept (confirmed defect) and reject (con-
firmed rule violation). The latter means that the responsible
developers consider the defect for some reason as intended;
we will discuss this further in Section 5.1. As a matter of
pragmatics, these defects are added into a local whitelist to
filter them out in future runs.

In the period of February to July 2010, the students so
far have submitted 123 patches. The submitted patches focus
on the arch/ and driver/ subsystems and fix 364 out of
1,776 identified defects (20%). 23 (6%) of the analyzed and
fixed defects were classified as bugs. If we extrapolate this
defect/bug ratio to the remaining defects, we can expect to
find another 80+ configurability-related bugs in the Linux
kernel.

defect
reports

whitelist
filter reject

rule violation

defect
analysis

document
in whitelist

submit
patch

upstream

accept
confirmed bug

improve
and

resubmit

Figure 6. Based on the analysis of the defect reports, a patch
is manually created and submitted to kernel developers. Based
on the acceptance, we classify the defects that are fixed by our
patch either as confirmed rule violation or confirmed defect.

Reaction of Kernel Maintainers. Table 3 lists the state of
the submitted patches in detail; the corresponding defects
are listed in Table 2 (lower half). In general, we see that our
patches are well received: 87 out of 123 (71%) have been
answered; more than 70 percent of them within less than one
day, some even within minutes (Figure 7). We take this as
indication that many of our patches are easy to verify and in
fact appreciated.

Contribution to Linux. Table 3 also classifies the submitted
patches as critical and noncritical, respectively. Critical
patches fix bugs, that is, configurability defects that have
an impact on the binary code. We did not investigate in
detail the run-time observable effects of the 23 identified
bugs. However, what can be seen from Table 3 is that the
responsible developers consider them as worth fixing: 16 out
of 17 (94%) of our critical patches have been answered; 9
have already been merged into Linus Torvalds’ master git
tree for Linux 2.6.36.

The majority of our patches fixes defects that affect the
source code only, such as the examples shown in Section 2.2.
However, even for these noncritical patches 57 out of 106
(54%) have already reached acknowledged state or better.



<1 hour 28.74%
<1 day 72.41%
<1 week 90.8%

Figure 7. Response time of 87 answered patches
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Figure 8. Evolution of defect blocks over various Kernel
versions. Most of our work was merged after the release of
Linux version 2.6.35.

These patches clean up the kernel sources by removing 5,129
lines of configurability-related dead code and superfluous
#ifdef statements (“cruft”). We consider this as a strong
indicator that the Linux community is aware of the negative
effects of configurability on the source-code quality and
welcomes attempts to improve the situation.

Figure 8 depicts the impact of our work on a larger scale.
To build this figure, we ran our tool on previous kernel
versions and calculated the number of configurability defects
that were fixed and introduced with each release. Most of
our patches entered the mainline kernel tree during the merge
window of version 2.6.36. Given that the patch submissions of
two students have already made such a measurable impact, we
expect that a consequent application of our approach, ideally
directly by developers that work on new or existing code,
could significantly reduce the problem of configurability-
related consistency issues in Linux.

5. Discussion
Our findings have yielded a notable number of configura-
bility defects in Linux. In the following, we discuss some
potential causes for the introduction of defects and rule viola-
tions, threats to validity, and the broader applicability of our
approach.

5.1 Interpretation of the Feedback
About 57 of the 123 submitted patches were accepted without
further comments. We take this as indication that experts can
easily verify the correctness of our submissions. Because
of the distributed development of the Linux kernel, drawing

patch status critical noncritical
∑

submitted 17 106 123
unanswered 1 35 36
ruleviolation 1 14 15
acknowledged 1 14 15
accepted 5 3 8
mainline 9 40 49

Table 3. Critical patches do have an effect on the resulting
binaries (kernel and runtime-loadable modules). Noncritical
patches remove text from the source code only.

the line between acknowledged and accepted (i.e., patches
that have been merged for the next release), is challenging.
We therefore count the 87 patches for which we received
comments by Linux maintainers that maintain a public branch
on the internet or are otherwise recognized in the Linux
community as a confirmation that we identified a valid defect.

Causes for Defects. We have not yet analyzed the
causes for defects systematically; doing this (e.g., using
HERODOTOS [Palix 2010]) remains a topic for further re-
search. However, we can already name some common causes,
for which we need to consider how changes get integrated
into Linux:

Logical defects are often caused by copy and paste (which
confirms a similar observation in [Engler 2001]). Apparently
code is often copied together with an enclosing #ifdef–
#else block into a new context, where either the #ifdef

or the #else branch is always taken (i.e., undead) and the
counterpart is dead.

The most common source for symbolic defects is spelling
mistakes, such as the CONFIG_HOTPLUG example in Patch 1.
Another source for this kind of defects is incomplete merges
of ongoing developments, such as architecture-specific code
that is maintained by respective developer teams who main-
tain separate development trees and only submit hand-
selected patch series for inclusion into the mainline. Ob-
viously, this hand selection does not consider configurability-
based defects – despite the recommendations in the patch
submission guidelines:7

6: Any new or modified CONFIG options don’t muck up the config menu.
7: All new Kconfig options have help text.
8: Has been carefully reviewed with respect to relevant Kconfig

combinations. This is very hard to get right with testing --
brainpower pays off here.

Our approach provides a systematic, tool-based approach for
this demanded checking of KCONFIG combinations.

Reasons for Rule Violations. On the other hand, we count
15 patches that were rejected by Linux maintainers. For
all these patches, the respective maintainers confirmed the
defects as valid (in one case even a bug!), but nevertheless
prefer to keep them in the code. Reasons for this (besides
carelessness and responsibility uncertainties) include:

7 Documentation/SubmitChecklist in the Linux source.



Documentation. Even though all changes to the Linux
source code are kept in the version control system (GIT),
some maintainers have expressed their preference to keep
outdated or unsupported feature implementations in the
code in order to serve as a reference or template (e.g.,
to ease the porting of driver code to a newer hardware
platform).

Out-of-tree development. In a number of cases, we find
configurability-related items that are referenced from code
in private development trees only. Keeping these symbolic
defects in the kernel seems to be considered helpful for
future code submission and review.

While it is debatable if all of the above are good reasons or
not, of course we have to accept the maintainers preferences.
The whitelist approach provides a pragmatic way to make
such preferences explicit – so that they are no longer reported
as defects, but can be addressed later if desired.

5.2 Threats to Validity
Accuracy. A strong feature of our approach is the accuracy
with which configurability defects can be found. In our
approach, false positives are conditional blocks that are
falsely reported as unselectable. This means that there is a
KCONFIG selection for which the code is seen by the compiler.
By design, our approach operates exact and avoids this kind
of error. Since by construction we avoid false positives (sans
implementation bugs), the major threat to validity is the
rate of false negatives, that is, the rate of the remaining,
unidentified issues.

In fact, we have found for 2 (confirmed) defects explicit
#error statements in the source that provoke compilation
errors in case an invalid set of features has been selected.
In our experiment, we classified these defects as confirmed
rule violations. On top of that, we can find 28 similar #error
statements in Linux 2.6.35. This indicates some distrust of
developers in the variability declarations in KCONFIG, which
our tool helps to mitigate by checking the effective constraints
accurately.

Coverage. So far we do not consider the (discouraged)
509 #undef and #define CONFIG_ statements that we find
in the code. However, these statements could possibly lead to
incomplete results for only at most 4.51 percent of the 11,283
KCONFIG items.

Another restriction of the current implementation is that
we do not yet analyze nonpropositional expressions in #ifdef

statements, like comparisons against the integral value of
some CONFIG_ flag. This affects about 2% out of 82,116
#ifdef blocks. We are currently looking into improving
our implementation to reduce this number even further by
rewriting the extracted constraints and process them using
a satisfiability modulo theories (SMT) or constraint solving
problem (CSP) engine.

An important, yet not considered source of feature con-
straints is the build system (makefiles). 91 percent of the
Linux source files are feature-dependent, that is, they are
not compiled at all when the respective feature has not been
selected. Incorporation of these additional constraints into
our approach is straight-forward: they can simply be added
as further conjunctions to the variability model. These addi-
tional constraints could possibly restrict the variability even
further, and thereby lead to false negatives.

Subtle semantic details and anachronisms of the KCONFIG
language and implementation [Berger 2010, Zengler 2010]
made our engineering difficult and contributed to the number
of false negatives. At the time we conducted the experiment
in Section 4, our implementation did not completely support
the KCONFIG features default value and select. Meanwhile,
we have fixed these issues in the undertaker, which increases
the raw number of defects from 1,776 to 2,972.

In no case our approach resulted in a change that proposes
to remove blocks that are used in production. However, in
one case8 we stumbled across old code that is useful with
some additional debug-only patches that have never been
merged. It turned out that the patches in question are no longer
necessary in favor of the new tracing infrastructure. Our patch
therefore has contributed to the removal of otherwise useless
and potentially confusing code.

Despite all potential sources of false negatives: Compared
to the 760 issues reported by the GREP-based approach
(including many false positives!, see Section 3.1), our tool
already finds more than twice as many defects. As our
approach prevents false positives, this has to be considered
as a lower bound for the number of configurability defects in
Linux!

5.3 General Applicability of the Approach
Linux is the most configurable piece of software we are
aware of, which made it a natural target to evaluate accuracy
and scalability of our approach. However, the approach can
be implemented for other software families as well, given
there is some way to extract feature identifiers and feature
constraints from all sources of variability. This is probably
always the case for the implementation space (code), which
is generally configured by CPP or some similar preprocessor.
Extracting the variability from the configuration space is
straight-forward, too, as long as features and constraints are
described by some semi-formal model (such as KCONFIG).
The configurability of eCos, for instance, is described in
the configuration description language (CDL) [Massa 2002],
whose expressiveness is comparable to KCONFIG.

KCONFIG itself is employed by more and more software
families besides Linux. Examples include OpenWRT9 or

8 http://kerneltrap.org/mailarchive/linux-ext4/2010/2/8/

6762333/thread
9 http://www.openwrt.org

http://kerneltrap.org/mailarchive/linux-ext4/2010/2/8/6762333/thread
http://kerneltrap.org/mailarchive/linux-ext4/2010/2/8/6762333/thread
http://www.openwrt.org


BusyBox.10 For these software families our approach could
be implemented with minimal effort.

However, even if the system software is configured by
a simple configure script (such as FreeBSD), it would still
be possible to extract feature identifiers and, hence, use our
approach to detect symbolic configurability defects – which
in the case of Linux account for 74 percent of all defects.
Feature constraints, on the other hand, are more difficult to
extract from configure files, as they are commonly given as
human-readable comments only. A possible solution might
be to employ techniques of natural language processing
to automatically infer the constraints from the comments,
similar to the approach suggested in [Tan 2007].

In a more general sense, our approach could be combined
with other tools to make them configurability aware. For
instance, modifications on in-kernel APIs and other larger
refactorings are commonly done tool assisted (e.g., Padioleau
[2008]). However, refactoring tools are generally not aware
of code liveness and suggest changes in dead code. Our
approach contributes to avoiding such useless work.

5.4 Variability-Aware Languages
The high relevance of static configurability for system soft-
ware gives rise to the question if we are in need of better
programming languages. Ideally, the language and compiler
would directly support configurability (implementation and
configuration), so that symbolic and semantic integrity issues
can be prevented upfront by means of type-systems or at least
be checked for at compile-time.

With respect to implementation of configurability it is
generally accepted that CPP might not be the right tool for
the job [Liebig 2010, Spencer 1992]. Many approaches
have been suggested for a better separation of concerns in
configurable (system) software, including, but not limited
to: object-orientation [Campbell 1993], component models
[Fassino 2002, Reid 2000], aspect-oriented programming
(AOP) [Coady 2003, Lohmann 2009], or feature-oriented
programming (FOP) [Batory 2004]. However, in the systems
community we tend to be reluctant to adopt new program-
ming paradigms, mostly because we fear unacceptable run-
time overheads and immature tools. C++ was ruled out of
the Linux kernel for exactly these reasons.11 The authors
certainly disagree here (in previous work with embedded op-
erating systems we could show that C++ class composition
[Beuche 1999] and AOP [Lohmann 2006] provide excellent
means to implement overhead-free, fine-grained static con-
figurability). Nevertheless, we have to accept CPP as the still
de-facto standard for implementing static configurability in
system software [Liebig 2010, Spinellis 2008].

With respect to modeling configurability, feature model-
ing and other approaches from the product line engineering

10 http://www.busybox.net
11 Trust me – writing kernel code in C++ is a BLOODY STUPID IDEA
LINUS TORVALDS [2004], http://www.tux.org/lkml/#s15-3

domain [Czarnecki 2000, Pohl 2005] provide languages and
tooling to describe the variability of software systems, includ-
ing systematic consistency checks. KCONFIG for Linux or
CDL for eCos fit in here. However, what is generally miss-
ing is the bridge between the modeled and the implemented
configurability. Hence tools like the UNDERTAKER remain
necessary.

6. Related Work
Automated bug detection by examining the source code has a
long tradition in the systems community. Many approaches
have been suggested to extract rules, invariants, specifica-
tions, or even misleading source-code comments from the
source code or execution traces [Engler 2001, Ernst 2000,
Kremenek 2006, Li 2005, Tan 2007]. Basically, all of these
approaches extract some internal model about what the code
should look like/behave and then match this model against
the reality to find defects that are potential bugs. For instance,
iComment [Tan 2007] employs means of natural language
processing to find inconsistencies between the programmer’s
intentions expressed in source-code comments and the ac-
tual implementation; Kremenek [2006] and colleagues use
logic and probability to automatically infer specifications that
can be checked by static bug-finding tools. However, none
of the existing approaches takes configurability into account
when inferring the internal model. In fact, the existing tools
are more or less configurability agnostic – they either ig-
nore configuration-conditional parts completely, fall back to
simple heuristics, or have to be executed on preprocessed
source code. Thereby, important information is lost. Our anal-
ysis framework could be combined with these approaches
to make them configurability-aware and to systematically
improve their coverage with respect to the (extremely high)
number of Linux variants. However, we also think that con-
figurability has to be understood as a significant source of
bugs in its own respect. Our approach does just that.

A reason for the fact that existing source-code analy-
sis tools ignore configurability (more or less) might be
that conditionally-compiled code tends to be hard to ana-
lyze in real-world settings. Many approaches for analyzing
conditional-compilation usage have been suggested, usually
based on symbolic execution. However, even the most pow-
erful symbolic execution techniques (such as KLEE [Cadar
2008]) would currently not scale to the size of the Linux
kernel. Hence, several authors proposed to apply transforma-
tion systems to symbolically simplify CPP code with respect
to configurability aspects [Baxter 2001, Hu 2000]. Our ap-
proach is technically similar in the sense that we also analyze
only the configurability-related subset of CPP. However, by
“simulating” the mechanics of the CPP using propositional
formulas [Sincero 2010], we can more easily integrate (and
check against) other sources of configurability, such as the
configuration-space model.

http://www.busybox.net
http://www.tux.org/lkml/#s15-3


So far we have submitted 123 patches to the Linux com-
munity, which is a reasonably high number to confirm many
observations of Guo [2009]: Patches for actively-maintained
files are a lot more likely to receive responses. It really is
worth the effort to figure out who is the principal maintainer
(which is not always obvious) and to ensure that patches are
easy reviewable and easy to integrate.

7. Summary and Conclusions
#ifdef’s sprinkled all over the place are neither an
incentive for kernel developers to delve into the code
nor are they suitable for long-term maintenance.12

To cope with a broad range of application and hardware set-
tings, system software has to be highly configurable. Linux
2.6.35, as a prominent example, offers 11,283 configurable
features (KCONFIG items), which are implemented at com-
pile time by 82,116 conditional blocks (#ifdef, #elif, . . . )
in the source code. The number of features has more than dou-
bled within the last five years! From the maintenance point of
view, this imposes big challenges, as the configuration model
(the selectable features and their constraints) and the config-
urability that is actually implemented in the code have to be
kept in sync. In the case of Linux, this has led to numerous
inconsistencies, which manifest as dead #ifdef-blocks and
bugs.

We have suggested an approach for automatic consistency
checks for compile-time configurable software. Our imple-
mentation for Linux has yielded 1,776 configurability issues.
Based on these findings, we so far have proposed 123 patches
(49 merged, 8 accepted, 15 acknowledged) that fix 364 of
these issues (among them 20 confirmed new bugs) and im-
prove the Linux source-code quality by removing 5,129 lines
of unnecessary #ifdef-code. The performance of our tool
chain is good enough to be integrated into the regular Linux
build process, which offers the chance for the Linux commu-
nity to prevent configurability-related inconsistencies from
the very beginning. We are currently finalizing out tools in
this respect to submit them upstream.

The lesson to learn from this paper is that configurability
has to be seen as a significant (and so far underestimated)
cause of software defects in its own respect. Our work is
meant as a call for attention on these problems – as well as a
first attempt to improve on the situation.
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