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Abstract
We introduce Re-FUSE, a framework that provides sup-
port for restartable user-level file systems. Re-FUSE mon-
itors the user-level file-system and on a crash transparently
restarts the file system and restores its state; the restart pro-
cess is completely transparent to applications. Re-FUSE pro-
vides transparent recovery through a combination of novel
techniques, including request tagging, system-call logging,
and non-interruptible system calls. We tested Re-FUSE with
three popular FUSE file systems: NTFS-3g, SSHFS, and
AVFS. Through experimentation, we show that Re-FUSE in-
duces little performance overhead and can tolerate a wide
range of file-system crashes. More critically, Re-FUSE does
so with minimal modification of existing FUSE file systems,
thus improving robustness to crashes without mandating in-
trusive changes.

Categories and Subject Descriptors D.0 [Software]: Gen-
eral—File system Reliability

General Terms Reliability, Fault tolerance, Performance

Keywords FUSE, Restartable, User-level File Systems

1. Introduction
File system deployment remains a significant challenge
to those developing new and interesting file systems de-
signs [Ganger 2010]. Because of their critical role in the
long-term management of data, organizations are sometimes
reluctant to embrace new storage technology even though
said innovations may address current needs. Similar prob-
lems exist in industry, where venture capitalists are loathe to
fund storage startups, as it is well known that it takes threeto
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five years for storage products to “harden” and thus become
ready for real commercial usage [Vahdat 2010].

One reason for this reluctance to adopt new technology
is that unproven software often still has bugs in it, beyond
those that are discovered through testing [Lu 2008]. Such
“heisenbugs” [Gray 1987] often appear only in deployment,
are hard to reproduce, and can lead to system unavailability
in the form of a crash.

File system crashes are harmful for two primary reasons.
First, when a file system crashes, manual intervention is of-
ten required to repair any damage and restart the file sys-
tem; thus, crashed file systems stay down for noticeable
stretches of time and decrease availability dramatically,re-
quiring costly human time to repair. Second, crashes give
users the sense that a file system “does not work” and thus
decrease the chances for adoption.

To address this problem, we introduce Restartable FUSE
(Re-FUSE), a restartable file system layer built as an ex-
tension to the Linux FUSE user-level file system infras-
tructure [Sourceforge 2010a]. Nearly 200 FUSE file sys-
tems have already been implemented [Sourceforge 2010b,
Wikipedia 2010], indicating that the move towards user-level
file systems is significant. In this work, we add a transpar-
ent restart framework around FUSE which hides many file-
system crashes from users; Re-FUSE simply restarts the file
system and user applications continue unharmed.

Restart with Re-FUSE is based on three basic techniques.
The first is request tagging, which differentiates activities
that are being performed on the behalf of concurrent re-
quests; the second issystem-call logging, which carefully
tracks the system calls issued by a user-level file system
and caches their results; the third isnon-interruptible sys-
tem calls, which ensures that no user-level file-system thread
is terminated in the midst of a system call. Together, these
three techniques enable Re-FUSE to recover correctly from
a crash of a user-level file system by simply re-issuing the
calls that the FUSE file system was processing when the
crash took place; no user-level application using a user-level
file system will notice the failure, except perhaps for a small
drop in performance during the restart. Additional perfor-
mance optimizations, includingpage versioningandsocket



buffering, are employed to lower the overheads of logging
and recovery mechanisms.

We evaluate Re-FUSE with three popular file systems,
NTFS-3g, SSHFS, and AVFS, which differ in their data-
access mechanisms, on-disk structures, and features. Less
than ten lines of code were added to each of these file sys-
tems to make them restartable, showing that the modifica-
tions required to use Re-FUSE are minimal. We tested these
file systems with both micro- and macro-benchmarks and
found that performance overhead during normal operation is
minimal. Moreover, recovery time after a crash is small, on
the order of a few hundred milliseconds in our tests.

Overall, we find that Re-FUSE successfully detects and
recovers from a wide range of fail-stop and transient failures.
By doing so, Re-FUSE increases system availability, as most
crashes no longer make the entire file system unavailable
for long periods of time. Re-FUSE thus removes one critical
barrier to the deployment of future file-system technology.

The rest of the paper is organized as follows. Section 2
gives an overview of FUSE and user-level file systems. Sec-
tion 3 discusses the essentials of a restartable user-level
file system framework. Section 4 presents Re-FUSE, and
Section 5 describes the three modified FUSE file systems.
Section 6 evaluates the robustness and performance of Re-
FUSE. Section 7 concludes the paper.

2. FUSE Background
Before delving into Re-FUSE, we first present background
on the original FUSE system. We discuss the rationale for
such a framework and present its basic architecture.

2.1 Rationale

FUSE was implemented to bridge the gap between features
that users want in a file system and those offered in kernel-
level file systems. Users want simple yet useful features on
top of their favorite kernel-level file systems. Examples of
such features are encryption, de-duplication, and accessing
files inside archives. Users also want simplified file-system
interfaces to access systems like databases, web servers, and
new web services such as Amazon S3. The simplified file-
system interface obviates the need to learn new tools and
languages to access data. Such features and interfaces are
lacking in many popular kernel-level file systems.

Kernel-level file-system developers may not be open to
the idea of adding all of the features users want in file
systems for two reasons. First, adding a new feature re-
quires a significant amount of development and debugging
effort [Zadok 2000]. Second, adding a new feature in a
tightly coupled system (such as a file system) increases the
complexity of the already-large code base. As a result, de-
velopers are likely only willing to include functionality that
will be useful to the majority of users.

FUSE enables file systems to be developed and deployed
at user level and thus simplifies the task of creating a new

file system in a number of ways. First, programmers no
longer need to have an in-depth understanding of kernel
internals (e.g., memory management, VFS, block devices,
and network layers). Second, programmers need not under-
stand how these kernel modules interact with others. Third,
programmers can easily debug user-level file systems using
standard debugging tools such as gdb [GNU 2010] and val-
grind [Nethercote 2007]. All of these improvements com-
bine to allow developers to focus on the features they want
in a particular file system.

In addition to Linux, FUSE has been developed for
FreeBSD [Creo 2010], Solaris [Open Solaris 2010], and
OS X [Google Code 2010] operating systems. Though most
of our discussion revolves around the Linux version of
FUSE, the issues faced herein are likely applicable to FUSE
within other systems.

2.2 Architecture

To better understand how FUSE file systems are different
than traditional kernel-level file systems, we begin by giv-
ing a bit of background on how kernel-level file-systems are
structured. In the majority of operating systems, requests
to file systems from applications begin at the system-call
layer and eventually are routed to the proper underlying file
system through a virtual file system (VFS) layer [Kleiman
1986]. The VFS layer provides a unified interface to imple-
ment file systems within the kernel, and thus much common
code can be removed from the file systems themselves and
performed instead within the generic VFS code. For exam-
ple, VFS code caches file-system objects, thus greatly im-
proving performance when objects are accessed frequently.

FUSE consists of two main components: theKernel File-
system Module(KFM) and a user-space librarylibfuse(see
Figure 1). The KFM acts as a pseudo file system and queues
application requeststhat arrive through the VFS layer. The
libfuse layer exports a simplified file-system interface that
each user-level file system must implement and acts as a
liaison between user-level file systems and the KFM.

A typical application request is processed as follows.
First, the application issues a system call, which is routed
through VFS to the KFM. The KFM queues this applica-
tion request (e.g., to read a block from a file) and puts the
calling thread to sleep. The user-level file system, through
the libfuse interface, retrieves the request off of the queue
and begins to process it; in doing so, the user-level file sys-
tem may issue a number of system calls itself, for example
to read or write the local disk, or to communicate with a
remote machine via the network. When the request process-
ing is complete, the user-level file system passes the result
back through libfuse, which places it within a queue, where
the KFM can retrieve it. Finally, the KFM copies the re-
sult into the page cache, wakes the application blocked on
the request, and returns the desired data to it. Subsequent
accesses to the same block will be retrieved from the page
cache, without involving the FUSE file system.
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Figure 1. FUSE Framework. The figure presents the FUSE
framework. The user-level file system (in solid white box) isa
server process that uses libfuse to communicate with the Kernel-
level FUSE Module (KFM). The client process is the application
process invoking operations on the file system. File-systemrequests
are processed in the following way: (1) the application sends a
request through the KFM via the VFS layer; (2) the request gets
tagged and is put inside the request queue; (3) the user-level file-
system worker thread dequeues the request; (4) the worker services
the request and returns the response; (5) the response is added back
to the queue; (6) finally, the KFM copies the data into the page
cache before returning it to the application.

Unlike kernel file systems, where the calling thread exe-
cutes the bulk of the work, FUSE has adecoupledexecution
model, in which the KFM queues application requests and a
separate user-level file system process handles them. As we
will see in subsequent sections, this decoupled model is use-
ful in the design of Re-FUSE. In addition, FUSE uses multi-
threading to improve concurrency in user-level file systems.
Specifically, the libfuse layer allows user-level file-systems
to create worker threads to concurrently process file-system
requests; as we will see in subsequent sections, such concur-
rency will complicate Re-FUSE.

The caching architecture of FUSE is also of interest. Be-
cause the KFM pretends to be a kernel file system, it must
create in-memory objects for each user-level file system ob-
ject accessed by the application. Doing so improves perfor-
mance greatly, as in the common case, cached requests can
be serviced without consulting the user-level file system.

3. Restartable User-Level File Systems
In this section, we discuss the essentials of a restartable user-
level file system framework. We present our goals, and then
discuss both our assumptions of the fault model as well as
assumptions we make about typical FUSE file systems. We
conclude by discussing some challenges a restartable system
must overcome, as well as some related approaches.

3.1 Goals

We now present our goals in building a restartable file-
system framework for FUSE. Such a framework should have
the following four properties:
Generic: A gamut of user-level file-systems exist today.
These file systems have varied underlying data-access mech-
anisms, features, and reliability guarantees. Ideally, the
framework should enable any user-level file system to be
made restartable with little or no changes.
Application-Transparent: We believe it is difficult for ap-
plications using a user-level file system to handle file-system
crashes. Expecting every application developer to change
and recompile their code to work with a restartable file-
system framework is likely untenable. Thus, any restartable
framework should be completely transparent to applications
and hide failures from them.
Lightweight: FUSE already has significant overheads com-
pared to kernel-level file systems. This additional overhead
is attributed to frequent context switching from user to ker-
nel and back as well as extra data copying [Rajgarhia 2010].
Thus, adding significant overhead on top of already slower
file-systems is not palatable; a restartable framework should
strive to minimize or remove any additional overheads.
Consistent:User-level file systems use different underlying
systems (such as databases, web servers, file systems, etc.)
to access and store their data. Each of these systems provide
different consistency guarantees. The restartable framework
should function properly with whatever underlying consis-
tency mechanisms are in use.

3.2 The Fault Model

Faults in a user-level file-system impact availability. A fault
could occur due to developer mistakes, an incomplete imple-
mentation (such as missing or improper error handling), or a
variety of other reasons. On a fault, a user-level file system
becomes unavailable until it is restarted.

We believe that user-level file systems are likely to be
less reliable than kernel-level file systems, due to a num-
ber of factors. First, unlike kernel-level file systems, most
user-level file systems are written by novice programmers.
Second, no common testing infrastructure exists to detect
problems; as a result, systems are likely not stress-testedas
carefully as kernel file systems are before release. Finally, no
FUSE documentation exists to inform user-level file-system
developers about the errors, corner cases, and failure scenar-
ios that a file system should handle.

Our goal is to tolerate a broad class of faults that oc-
cur due to programming mistakes and transient changes in
the environment. Examples of sources of such faults include
sloppy or missing error handling, temporary resource un-
availability, memory corruption, and memory leaks. Given
the relative inexperience of the developers of many user-
level file systems, it is hard to eliminate such failures.



The subset of these failures we seek to address are those
that are “fail-stop” and transient [Qin 2005, Swift 2004,
Zhou 2006]. In these cases, when such faults are triggered,
the system crashes quickly, before ill effects such as perma-
nent data loss can arise; upon retry, the problem is unlikely
to re-occur. Faulty error-handling code and certain program-
ming bugs are thus avoided on restart, as the fault that caused
these errors to manifest does not take place again.

As with many systems, our goal is not to handle faults
caused by basic logic errors and fail-silent bugs. Avoiding
logic errors is critical to the correct operation of the file-
system; we believe that such bugs should (and likely would)
be detected and eliminated during development. On the other
hand, fail-silent bugs are more problematic, as they do not
crash the system but silently corrupt the in-memory state
of the file system. Such corruption could slowly propagate
to other components in the system (e.g., the page cache);
recovery from such faults is difficult if not impossible. To
the best of our knowledge, all previous restartable solutions
make the same fail-stop and transient assumption that we
make [Candea 2004, David 2008, Qin 2005, Sundararaman
2010, Swift 2003; 2004].

In our failure model, we assume that user-level file-
system crashes are due to transient, fail-stop faults. We also
assume that all the other components (i.e., the operating sys-
tem, FUSE itself, and any remote host) work correctly. We
believe it is reasonable to make this assumption as the rest
of the components that the user-level file system interacts
with (i.e., kernel components) are more rigorously tested
and used by a larger number of users.

3.3 The User-level File-System Model

To design a restartable framework for FUSE, we must first
understand how user-level file systems are commonly im-
plemented; we refer to these assumptions as ourreference
modelof a user-level file system.

It is infeasible to examine all FUSE file systems to ob-
tain the “perfect” reference model. Thus, to derive a ref-
erence model, we instead analyze six diverse and popular
file systems. Table 1 presents details on each of the six file
systems we chose to study. NTFS-3g and ext2fuse each are
kernel-like file systems “ported” to user space. AVFS allows
programs to look inside archives (such as tar and gzip) and
TagFS allows users to organize documents using tags inside
existing file systems. Finally, SSHFS and HTTPFS allow
users to mount remote file systems or websites through the
SSH and HTTP protocols, respectively. We now discuss the
properties of the reference file-system model.
Simple Threading Model: A single worker thread is re-
sponsible for processing a file-system request from start to
finish, and only works on a single request at any given time.
Amongst the reference-model file systems, only NTFS-3g
is single-threaded by default; the rest all operate in multi-
threaded mode.

File System Category LOC Downloads

NTFS-3g block-based 32K N/A

ext2fuse block-based 19K 40K

AVFS pass-through 39K 70K

TagFS pass-through 2K 400

SSHFS network-based 4K 93K

HTTPFS network-based 1K 8K

Table 1. Reference Model File Systems.

Request Splitting:Each request to a user-level file system is
eventually translated into one or more system calls. For ex-
ample, an application-level write request to a NTFS-3g file-
system is translated to a sequence of block reads and writes
where NTFS-3g reads in the meta-data and data blocks of
the file and writes them back after updating them.
Access Through System Calls:Any external calls that the
user-level file system needs to make are issued through the
system-call interface. These requests are serviced by either
the local system (e.g., the disk) or a remote server (e.g., a
web server); in either case, system calls are made by the
user-level file system in order to access such services.
Output Determinism: For a given request, the user-level
file system always performs the same sequence of opera-
tions. Thus, on replay of a particular request, the user-level
file system outputs the same values as the original invoca-
tion [Altekar 2009].
Synchronous Writes:Both dirty data and meta-data gener-
ated while serving a request are immediately written back
to the underlying system. Unlike kernel-level file systems,
a user-level file system does not buffer writes in memory;
doing so makes a user-level file system stateless, a property
adhered to by many user-level file systems in order to afford
a simpler implementation.

Our reference model clearly does not describe all possible
user-level file-system behaviors. The FUSE framework does
not impose any rules or restrictions on how one should
implement a file system; as a result, it is easy to deviate from
our reference model, if one desires. We discuss this issue
further at the end of Section 4.

3.4 Challenges

FUSE in its current form does not tolerate any file-system
mistakes. On a user-level file system crash, the kernel cleans
up the resources of the killed file-system process, which
forces FUSE to abort all new and in-flight requests of the
user-level file system and return an error (a “connection
abort”) to the application process. The application is thus
left responsible for handling failures from the user-levelfile
system. FUSE also prevents any subsequent operations on
the crashed file system until a user manually restarts it. As
a result, the file system remains unavailable to applications
during this process. Three main challenges exist in restarting
user-level file systems; we now discuss each in detail.
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Figure 2. SSHFS Create Operation.The figure shows a sim-
plified version of SSHFS processing a create request. The number
within the gray circle indicates the sequence of steps SSHFSper-
forms to complete the operation. The FUSE, application process,
and network components of the OS are not shown for simplicity.

Generic Recovery Mechanism:Currently there are hun-
dreds of user-level file systems and most of them do not have
in-built crash-consistency mechanisms. Crash consistency
mechanisms such as journaling or snapshotting could help
restore file-system state after a crash. Adding such mecha-
nisms would require significant implementation effort, not
only for user-level file-systems but also to the underlying
data-management system. Thus, any recovery mechanism
should not depend upon the user-level file system itself in
order to perform recovery.
Synchronized State:Even if a user-level file system has
some in-built crash-consistency mechanism, leveraging such
a mechanism could still lead to a disconnect between ap-
plication perceived file-system state and the state of the re-
covered file system. This discrepancy arises because crash-
consistency mechanisms group file-system operations into a
single transaction and periodically commit them to the disk;
they are designed only for power failures and not for soft
crashes. Hence, on restart, a crash-consistency mechanism
only ensures that the file system is restored back to the last
known consistent state, which results in a loss of updates
that occurred between the last checkpoint and the crash. As
applications are not killed on a user-level file-system crash,
the file-system state recovered after a crash may not be the
same as that perceived by applications. Thus, any recovery
mechanism must ensure that the file system and application
eventually realize the same view of file system state.
Residual State:The non-idempotent nature of system calls
in user-level file systems can leaveresidual stateon a crash.
This residual state prevents file systems from recreating the
state of partially-completed operations. Both undo or redo
of partially completed operations through the user-level file
system thus may not work in certain situations. The create
operation in SSHFS is a good example of such an operation.
Figure 2 shows the sequence of steps performed by SSHFS
during a create request. SSHFS can crash either before file
create (Step 4) or before it returns the result to the FUSE
module (Step 5). Undo would incorrectly delete a file if it
was already present at the remote host if the crash happened
before Step 4; redo would incorrectly return an error to the
application if it crashed before Step 5. Thus any recovery
mechanism must properly handle residual state.

3.5 Existing Solutions

There has been a great deal of research on restartable sys-
tems. Solutions such as CuriOS [David 2008], Rx [Qin
2005], and Microreboot [Candea 2004] help restart and re-
cover application processes from crashes. These solutions
require significant implementation effort to both the file sys-
tem and underlying data-access system and also have high
performance overheads. For example, CuriOS heavily in-
struments file-system code to force the file system to store
its state in a separate address space. On restart, CuriOS uses
the stored state to rebuild in-memory file-system state, but
does not take care of on-disk consistency.

Solutions that use either roll-back [Hitz 1994] or roll-
forward [Hagmann 1987, Sweeney 1996, Ts’o 2002] do not
work well for user-level file systems. The residual state left
by non-idempotent operations coupled with utilization of an
underlying data-access system (such as a database) prevent
proper recovery using these techniques.

Our earlier work on Membrane [Sundararaman 2010]
shows how to restart kernel-level file systems. However, the
techniques developed therein are highly tailored to the in-
kernel environment and have no applicability to the FUSE
context. Thus, a new FUSE-specific approach is warranted.

4. Re-FUSE: Design and Implementation
Re-FUSE is designed to transparently restart the affected
user-level file system upon a crash, while applications and
the rest of the operating system continue to operate normally.
In this section, we first present an overview of our approach.
We then discuss how Re-FUSE anticipates, detects, and re-
covers from faults. We conclude with a discussion of how
Re-FUSE leverages many existing aspects of FUSE to make
recovery simpler, and some limitations of our approach.

4.1 Overview

The main challenge for Re-FUSE is to restart the user-level
file system without losing any updates, while also ensuring
the restart activity is both lightweight and transparent. File
systems arestateful, and as a result, both in-memory and
on-disk state needs to be carefully restored after a crash.
Three types of work must be done by the system to ensure
correct recovery. First isanticipation, which is the additional
work that must be done during the normal operation of a file
system to prepare the file system for a failure. The second is
detection, which notices a problem has occurred. The third
component,recovery, is the additional work performed after
a failure is detected to restore the file system back to its fully-
operational mode.

Unlike existing solutions, Re-FUSE takes a different ap-
proach to restoring the consistency of a user-level file system
after a file-system crash. After a crash, most existing systems
rollback their state to a previous checkpoint and attempt to
restore the state by re-executing operations from the begin-
ning [Candea 2004, Qin 2005, Sundararaman 2010]. In con-



trast, Re-FUSE does not attempt to rollback to a consistent
state, but rather continues forward from the inconsistent state
towards a new consistent state. Re-FUSE does so by allow-
ing partially-completed requests to continue executing from
where they were stopped at the time of the crash. This action
has the same effect as taking a snapshot of the user-level file
system (including on-going operations) just before the crash
and resuming from the snapshot during the recovery.

Most of the complexity and novelty in Re-FUSE comes
in the fault anticipation component of the system. We now
discuss this piece in greater detail, before presenting the
more standard detection and recovery protocols.

4.2 Fault Anticipation

In anticipation of faults, Re-FUSE must perform a number
of activities in order to ensure it can properly recover once
the said fault arises. Specifically, Re-FUSE must track the
progress of application-level file-system requests in order to
continue executing them from their last state once a crash
occurs. The inconsistency in file-system state is caused by
partially-completed operations at the time of the crash; fault
anticipation must do enough work during normal operation
in order to help the file system move to a consistent state
during recovery.

To create light-weight continuous snapshots of a user-
level file system, Re-FUSE fault anticipation uses three dif-
ferent techniques: request tagging, system-call logging,and
uninterruptible system calls. Re-FUSE also optimizes its
performance through page versioning. We now discuss each
of these in detail.

4.2.1 Request Tagging

Tracking the progress of each file-system request is difficult
in the current FUSE implementation. The decoupled execu-
tion model of FUSE combined with request splitting at the
user-level file system makes it hard for Re-FUSE to correlate
an application request with the system calls performed by a
user-level file system to service said application request.

Request taggingenables Re-FUSE to correlate applica-
tion requests with the system calls that each user-level file
system makes on behalf of the request. As the name sug-
gests, request tagging transparently adds a request ID to the
task structure of the file-system process (i.e., worker thread)
that services it.

Re-FUSE instruments the libfuse layer to automatically
set the ID of the application request in the task structure of
the file-system thread whenever it receives a request from the
KFM. Re-FUSE adds an additional attribute to the task struc-
ture to store the request ID. Any system call that the thread
issues on behalf of the request thus has the ID in its task
structure. On a system call, Re-FUSE inspects the tagged re-
quest ID in the task structure of the process to correlate the
system call with the original application request. Re-FUSE
also uses the tagged request ID in the task structure of the
file-system process to differentiate system calls made by the
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Figure 3. Request Tagging and System-call Logging.The
figure shows how Re-FUSE tracks the progress of individual file-
system request. When KFM queues theapplication requests(de-
noted by R with a subscript). Re-FUSE tracks the progress of the
request in the following way: (1) the request identifier is transpar-
ently attached to the task structure of the worker thread at the lib-
fuse layer; (2) the user-level file system worker thread issues one or
more system calls (denoted by S with a subscript) while processing
the request; (3 and 4) Re-FUSE (at the system call interface)iden-
tifies these calls through the request ID in the caller’s taskstructure
and logs the input parameters along with the return value; (5) the
KFM, upon receiving the response from the user-level file system
for a request, deletes its entries from the log.

user-level file system from other processes in the operating
system. Figure 3 presents these steps in more detail.

4.2.2 System-Call Logging

Re-FUSE checkpoints the progress of individual application
requests inside the user-level file system by logging the
system calls that the user-level file system makes in the
context of the request. On a restart, when the request is re-
executed by the user-level file system, Re-FUSE returns the
results from recorded state to mimic its execution.

The logged state contains the type, input arguments, and
the response (return value and data), along with a request
ID, and is stored in a hash table called thesyscall request-
response table. This hash table is indexed by the ID of the
application request. Figure 3 shows how system-call logging
takes place during regular operations.

Re-FUSE maintains the number of system calls that a
file-system process makes to differentiate between user-level
file-system requests to the same system call with identi-
cal parameters. For example, on a create request, NTFS-
3g reads the same meta-data block multiple times between
other read and write operations. Without a sequence num-
ber, it would be difficult to identify its corresponding entry
in the syscall request-response table. Additionally, the se-
quence number also serves as a sanity check to verify that



the system calls happen in the same order during replay. Re-
FUSE removes the entries of the application request from
the hash table when the user-level file system returns the re-
sponse to the KFM.

4.2.3 Non-interruptible System Calls

The threading model in Linux prevents this basic logging
approach from working correctly. Specifically, the thread-
ing model in Linux forces all threads of a process to be
killed when one of the thread terminates (or crashes) due
to a bug. Moreover, the other threads are killed independent
of whether they are executing in user or kernel mode. Our
logging approach only works if the system call issued by
the user-level file system finishes completely, as a partially-
completed system call could leave some residual state in-
side the kernel, thus preventing correct replay of in-flight
requests.

To remedy this problem, Re-FUSE introduces the no-
tion of non-interruptible system calls. Such a system call
provides the guarantee that if a system call starts execut-
ing a request, it continues until its completion. Of course,
the system call can still complete by returning an error, but
the worker thread executing the system call cannot be killed
prematurely when one of its sibling threads is killed within
the user-level file-system. In other words, by using non-
interruptible system calls, Re-FUSE allows a user-level file-
system thread to continue to execute a system call to com-
pletion even when another file-system thread is terminated
due to a crash.

Re-FUSE implements non-interruptible system calls by
changing the default termination behavior of a thread group
in Linux. Specifically, Re-FUSE modifies the termination
behavior in the following way: when a thread abruptly ter-
minates, Re-FUSE allows other threads in the group to com-
plete whatever system call they are processing until they are
about to return the status (and data) to the user. Re-FUSE
then terminates said threads after logging their responses(in-
cluding the data) to the syscall request-response table.

Re-FUSE eagerly copies input parameters to ensure that
the crashed process does not infect the kernel. Lazy copy-
ing of input parameters to a system call in Linux could po-
tentially corrupt the kernel state as non-interruptible sys-
tem calls allow other threads to continue accessing the pro-
cess state. Re-FUSE prevents access to corrupt input argu-
ments by eagerly copying in parameters from the user buffer
into the kernel and also by skippingCOPY FROM USERand
COPY TO USER functions after a crash. It is important to
note that the process state is never accessed within a sys-
tem call except for copying arguments from the user to the
kernel at the beginning. Moreover, non-interruptible system
calls are enforced only for user-level file system processes
(i.e., only for processes that have a FUSE request ID set in
their task structure). As a result, other application processes
remain unaffected by non-interruptible system calls.

4.2.4 Performance Optimizations

Logging responses of read operations has high overheads in
terms of both time and space as we also need to log the data
returned with each read request. To reduce these overheads,
instead of storing the data as part of the log records, Re-
FUSE implementspage versioning, which can greatly im-
prove performance. Re-FUSE first tracks the pages accessed
(and also returned) during each read request and then marks
them as copy-on-write. The operating system automatically
creates a new version whenever a subsequent request modi-
fies the previously-marked page. The copy-on-write flag on
the marked pages is removed when the response is returned
back from the user-level file system to the KFM layer. Once
the response is returned back, the file-system request is re-
moved from the request queue at the KFM layer and need
not be replayed back after a crash.

Page versioning does not work for network-based file sys-
tems, which use socket buffers to send and receive data. To
reduce the overheads of logging read operations, Re-FUSE
also caches the socket buffers of the file-system requests un-
til the request completes.

4.3 Fault Detection

Re-FUSE detects faults in a user-level file-system through
file-system crashes. As discussed earlier, Re-FUSE only
handles faults that are both transient and fail-stop. Unlike
kernel-level file systems, detection of faults in a user-level
file system is simple. The faults Re-FUSE attempts to re-
cover crash the file-system as soon as they are triggered (see
Section 3.2). Re-FUSE inspects the return value and the sig-
nal attached to the killed file-system process to differentiate
between regular termination and a crash.

Re-FUSE currently only implements a lightweight fault-
detection mechanism. Fault detection can be further hard-
ened in user-level file systems by applying techniques used
in other systems [Cowan 1998, Necula 2005, Zhou 2006].
Such techniques can help to automatically add checks (by
code or binary instrumentation) to crash file systems more
quickly when certain types of bugs are encountered (e.g.,
out-of-bounds memory accesses).

4.4 Fault Recovery

The recovery subsystem is responsible for restarting and
restoring the state of the crashed user-level file system. To
restore the in-memory state of the crashed user-level file
system, Re-FUSE leverages the information about the file-
system state available through the KFM. Recovery after a
crash mainly consists of the following steps: cleanup, re-
initialize, restore the in-memory state of the user-level file
system, and re-execute the in-flight file-system requests at
the time of the crash. The decoupled execution model in
the FUSE preserves application state on a crash. Hence,
application state need not be restored. We now explain the
steps in the recovery process in detail.



The operating system automatically cleans up the re-
sources used by a user-level file system on a crash. The file
system is run as a normal process with no special privileges
by the FUSE. On a crash, like other killed user-level pro-
cesses, the operating system cleans up the resources of the
file system, obviating the need for explicit state clean up.

Re-FUSE holds an extra reference on the FUSE device
file object owned by the crashed process. This file object
is the gateway to the request queue that was being handled
by the crashed process and KFM’s view of the file system.
Instead of doing a new mount operation, the file-system
process sends a restart message to the KFM to attach itself
to the old instance of the file system in KFM. This action
also informs the KFM to initiate the recovery process for the
particular file system.

The in-memory file-system state required to execute file-
system requests is restored using the state cached inside the
kernel (i.e., the VFS layer). Re-FUSE then exploits the fol-
lowing property: an access on a user-level file-system ob-
ject through the KFM layer recreates it. Re-FUSE performs
a lookup for each of the object cached in the VFS layer,
which recreates the corresponding user-level file-system ob-
ject in memory. Re-FUSE also uses the information returned
in each call to point the cached VFS objects to the newly cre-
ated file-system object. It is important to note that lookups
do not recreate all file-system objects but only those required
to re-execute both in-flight and new requests. To speed up re-
covery, Re-FUSE looks up file-system objects lazily.

Finally, Re-FUSE restores the on-disk consistency of the
user-level file-system by re-executing in-flight requests.To
re-execute the crashed file-system requests, a copy of each
request that is available in the KFM layer is put back on
the request queue for the restarted file system. For each
replayed request, the FUSE request ID, sequence number of
the external call, and input arguments are matched with the
entry in the syscall request-response table and if they match
correctly, the cached results are returned to the user-level
file system. If the previously encountered fault is transient,
the user-level file system successfully executes the request to
completion and returns the results to the waiting application.

On an error during recovery, Re-FUSE falls back to the
default FUSE behavior, which is to crash the user-level file
system and wait for the user to manually restart the file sys-
tem. An error could be due to a non-transient fault or a mis-
match in one or more input arguments in the replayed system
call (i.e., violating our assumptions about the reference file-
system model). Before giving up on recovering the file sys-
tem, Re-FUSE dumps useful debugging information about
the error for the file-system developer.

4.5 Leveraging FUSE

The design of FUSE simplifies the recovery process in a
user-level file system for the following four reasons. First,
in FUSE, the file-system is run as a stand-alone user-level
process. On a file-system crash, only the file-system process

is killed and other components such as FUSE, the operating
system, local file system, and even a remote host are not
corrupted and continue to work normally.

Second, the decoupled execution model blocks the appli-
cation issuing the file-system request at the kernel level (i.e.,
inside KFM) and a separate file-system process executes the
request on behalf of the application. On a crash, the decou-
pled execution model preserves application state and also
provides a copy of file-system requests that are being ser-
viced by the user-level file system.

Third, requests from applications to a user-level file sys-
tem are routed through the VFS layer. As a result, the VFS
layer creates an equivalent copy of the in-memory state of
the file system inside the kernel. Any access (such as a
lookup) to the user-level file system using the in-kernel copy
recreates the corresponding in-memory object.

Finally, application requests propagated from KFM to a
user-level file system are always idempotent (i.e., this idem-
potency is enforced by the FUSE interface). The KFM layer
ensures idempotency of operations by changing all relative
arguments from the application to absolute arguments be-
fore forwarding it to the user-level file system. The idempo-
tent requests from the KFM allow requests to be re-executed
without any side effects. For example, the read system call
does not take the file offset as an argument and uses the cur-
rent file offset of the requesting process; the KFM converts
this relative offset to an absolute offset (i.e., an offset from
beginning of the file) during a read request.

4.6 Limitations

Our approach is obviously not without limitations. First, one
of the assumptions that Re-FUSE makes for handling non-
idempotency is that operations execute in the same sequence
every time during replay. If file systems have some internal
non-determinism, additional support would be required from
the remote (or host) system to undo the partially-completed
operations of the file system. For example, consider block al-
location inside a file system. The block allocation process is
deterministic in most file systems today; however, if the file
system randomly picked a block during allocation, the ar-
guments to the subsequent replay operations (i.e., the block
number of the bitmap block) would change and thus could
potentially leave the file system in an inconsistent state.

Re-FUSE does not currently support all I/O interfaces.
For example, file systems cannot use mmap to write back
data to the underlying system as updates to mapped files are
not immediately visible through the system-call interface.
Similarly, page versioning does not work in direct-I/O mode;
Re-FUSE needs the data to be cached within the page cache.

Multi-threading can also limit the applicability of Re-
FUSE. For example, multi-threading in block-based file sys-
tems could lead to race conditions during replay of in-flight
requests and hence data loss after recovery. Different thread-
ing models could also involve multiple threads to handle a
single request. For such systems, the FUSE request ID needs



Component Original Added Modified
libfuse 9K 250 8
KFM 4K 750 10
Total 13K 1K 18

FUSE Changes

Component Original Added Modified
VFS 37K 3K 0
MM 28K 250 1
NET 16K 60 0
Total 81K 3.3K 1

Kernel Changes

Table 2. Implementation Effort. The table presents the code
changes required to transform FUSE and Linux 2.6.18 into their
restartable counterparts.

to be explicitly transferred between the (worker) threads so
that the operating system can identify the FUSE request ID
for which the corresponding system call is issued.

The file systems in our reference model do not cache data
in user space, but user-level file systems certainly could do
so to improve performance (e.g., to reduce the disk or net-
work traffic). For such systems, the assumption about the
completion of requests (by the time the response is writ-
ten back) would be broken and result in lost updates after
a restart. One solution to handle this issue is to add a com-
mit protocol to the request-handling logic, where in addi-
tion to sending a response message back, the user-level file
system should also issue a commit message after the write
request is completed. Requests in the KFM could be safely
thrown away from the request queue only after a commit
message is received from the user-level file system. In the
event of a crash, all cached requests for which the commit
message has not been received will be replayed to restore
file-system state. For multi-threaded file systems, Re-FUSE
would also need to maintain the execution order of requests
to ensure correct replay. Moreover, if a user-level file system
internally maintains a special cache (for some reason), for
correct recovery, the file system would need to to explicitly
synchronize the contents of the cache with Re-FUSE.

4.7 Implementation Statistics

Our Re-FUSE prototype is implemented in Linux 2.6.18
and FUSE 2.7.4. Table 2 shows the code changes done in
both FUSE and the kernel proper. For Re-FUSE, around
3300 and 1000 lines of code were added to the Linux ker-
nel and FUSE, respectively. The code changes in libfuse
include request tagging, fault detection, and state restora-
tion; changes in KFM center around support for recovery.
The code changes in the VFS layer correspond to the sup-
port for system-call logging, and modifications in the MM
and NET modules correspond to page versioning and socket-
buffer caching respectively.

5. Re-FUSE File Systems
Re-FUSE is not entirely transparent to user-level file sys-
tems. We briefly describe the minor changes required in the
three file systems employed in this work.

NTFS-3g: NTFS-3g reads a few key metadata pages into
memory during initialization, just after the creation of the
file system, and uses these cached pages to handle subse-
quent requests. However, any changes to these key metadata
pages are immediately written back to disk while processing
requests. On a restart of the file-system process, NTFS-3g
would again perform the same initialization process. How-
ever, if we allow the process to read the current version of
the metadata pages, it could potentially access inconsistent
data and may thus fail. To avoid this situation, we return the
oldest version of the metadata page on restart, as the oldest
version points to the version that existed before the handling
of a particular request (note that NTFS-3g operates in single-
threaded mode).

AVFS: To make AVFS work with Re-FUSE, we simply
increment the reference count of open files and cache the file
descriptor so that we can return the same file handle when it
is reopened again after a restart.

SSHFS: To make SSHFS work correctly with Re-FUSE,
we made the following changes to SSHFS. SSHFS internally
generates its own request IDs to match the responses from
the remote host with waiting requests. The request IDs are
stored inside SSHFS and are lost on a crash. After restart, on
replay of an in-flight request, SSHFS generates new request
IDs which could be different than the old ones. In order to
match new request IDs with the old ones, Re-FUSE uses
the FUSE request ID tagged in the worker thread along
with the sequence number. Once requests are matched, Re-
FUSE correctly returns the cached response. Also, to mask
the SSHFS crash from the remote server, Re-FUSE holds an
extra reference count on the network socket, and re-attaches
it to the new process that is created. Without this action, upon
a restart, SSHFS would start a new session, and the cached
file handle would not be valid in the new session.

6. Evaluation
We now evaluate Re-FUSE in the following three categories:
generality, robustness, and performance. Generality helps to
demonstrate that our solution can be easily applied to other
file systems with little or no change. Robustness helps show
the correctness of Re-FUSE. Performance results help us
analyze the overheads during regular operations and during
a crash to see if they are acceptable.

All experiments were performed on a machine with a 2.2
GHz Opteron processor, two 80GB WDC disks, and 2GB of
memory running Linux 2.6.18. We evaluated Re-FUSE with
FUSE (2.7.4) using NTFS-3g (2009.4.4), AVFS (0.9.8), and
SSHFS (2.2) file systems. For SSHFS, we use public-key
authentication to avoid typing the password on restart.



File System Original Added Modified

NTFS-3g 32K 10 1

AVFS 39K 4 1

SSHFS 4K 3 2

Table 3. Implementation Complexity.The table presents the
code changes required to transform NTFS-3g, AVFS and SSHFS
into their restartable counterparts.

6.1 Generality

To show Re-FUSE can be used by many user-level file sys-
tems, we chose NTFS-3g, AVFS, and SSHFS. These file
systems are different in their underlying data access mech-
anism, reliability guarantees, features, and usage. Table3
shows the code changes required in each of these file sys-
tems to work with Re-FUSE.

From the table, we can see that file-system specific
changes required to work with Re-FUSE are minimal. To
each user-level file system, we have added less than 10 lines
of code, and modified a few more. Some of these lines were
added to daemonize the file system and to restart the pro-
cess in the event of a crash. A few further lines were added
or modified to make recovery work properly, as discussed
previously in Section 5.

6.2 Robustness

To analyze the robustness of Re-FUSE, we use fault injec-
tion. We employ both controlled and random fault-injection
to show the inability of current user-level file systems to tol-
erate faults and how Re-FUSE helps them.

The injected faults are fail-stop and transient. These faults
try to mimic some of the possible crash scenarios in user-
level file systems. We first run the fault injection experiments
on a vanilla user-level file system running over FUSE and
then compare the results by repeating them over the adapted
user-level file system running over Re-FUSE both with and
without kernel modifications. The experiments without the
kernel modifications are denoted byRestartand those with
the kernel changes are denoted byRe-FUSE. We include
the restart column to show that, without the kernel support,
simple restart and replay of in-flight operations does not
work well for FUSE.

6.2.1 Controlled Fault Injection

We employ controlled fault injection to understand how
user-level file systems react to failures. In these experi-
ments, we exercise different file-system code paths (e.g.,
create(), mkdir(), etc.) and crash the file system by in-
jecting transient faults (such as a null-pointer dereference) in
these code paths. We performed a total of 60 fault-injection
experiments for all three file systems; we present the user-
visible results.

User-visible results help analyze the impact of a fault both
at the application and the file-system level. We chooseap-
plication state, file-system consistency, andfile-system state

as the user-visible metrics of interest. Application statein-
dicates how a fault affects the execution of the application
that uses the user-level file system. File-system consistency
indicates if a potential data loss could occur as a result of a
fault. File-system state indicates if a file system can continue
servicing subsequent requests after a fault.

Table 4 summarizes the results of our fault-injection ex-
periments. The caption explains how to interpret the data in
the table. We now discuss the major observations and the
conclusions of our fault-injection experiments.

First, we analyze the vanilla versions of the file systems
running on vanilla FUSE and a vanilla Linux kernel. The re-
sults are shown in the leftmost result column in Table 4. We
observe that the vanilla versions of user-level file systems
and FUSE do a poor job in hiding failures from applications.
In all experiments, the user-level file system is unusable af-
ter the fault; as a result, applications have to prematurely
terminate their requests after receiving an error (a “software-
caused connection abort”) from FUSE. Moreover, in 40% of
the cases, crashes lead to inconsistent file system state.

Second, we analyze the usefulness of fault-detection and
simple restart at the KFMwithoutany explicit support from
the operating system. The second result column (denoted
by Restart) of Table 4 shows the result. We observe that a
simple restart of the user-level file system and replay of in-
flight requests at the KFM layer ensures that the application
completes the failed operation in the majority of the cases
(around 60%). It still cannot, however, re-execute a signif-
icant amount (around 40%) of partially-completed opera-
tions due to the non-idempotent nature of the particular file-
system operation. Moreover, an error is wrongly returned to
the application and the crashes leave the file system in an
inconsistent state.

Finally, we analyze the usefulness of Re-FUSE that in-
cludes restarting the crashed user-level file system, replaying
in-flight requests, and has support from the operating sys-
tem for re-executing non-idempotent operations (i.e., allthe
support described in Section 4). The results of the experi-
ments are shown in the rightmost column of Table 4. From
the table, we can see that all faults are handled properly, ap-
plications successfully complete the operation, and the file
system is always left in a consistent state.

6.2.2 Random Fault Injection

In order to stress the robustness of our system, we use ran-
dom fault injection. In the random fault-injection experi-
ments, we arbitrarily crash the user-level file system during
different workloads and observe the user-visible results.The
sort, Postmark, and OpenSSH macro-benchmarks are used
as workloads for these experiments; each is described further
below. We perform the experiments on the vanilla versions
of the user-level file systems, FUSE and Linux kernel, and
on the adapted versions of the user-level file systems that run
with Re-FUSE.
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create fusecreate × × × e ×
√ √ √ √

mkdir fusecreate × × × e ×
√ √ √ √

symlink fusecreate × × × e ×
√ √ √ √

link link × × × e ×
√ √ √ √

rename link × × × e ×
√ √ √ √

open fuseopen ×
√

×
√ √ √ √ √ √

read fuseread ×
√

×
√ √ √ √ √ √

readdir fusereaddir ×
√

×
√ √ √ √ √ √

readlink fusereadlink ×
√

×
√ √ √ √ √ √

write fusewrite × × ×
√

×
√ √ √ √

unlink delete × × × e ×
√ √ √ √

rmdir inodesync × × × e ×
√ √ √ √

truncate fusetruncate × × ×
√

×
√ √ √ √

utime inodesync ×
√

×
√ √ √ √ √ √

SSHFS

SSHFSfn Regular Restart Re-FUSE

create opencommon ×
√

× e
√ √ √ √ √

mkdir mkdir ×
√

× e
√ √ √ √ √

symlink symlink ×
√

× e
√ √ √ √ √

rename rename ×
√

× e
√ √ √ √ √

open opencommon ×
√

×
√ √ √ √ √ √

read syncread ×
√

×
√ √ √ √ √ √

readdir getdir ×
√

×
√ √ √ √ √ √

readlink readlink ×
√

×
√ √ √ √ √ √

write write ×
√

×
√ √ √ √ √ √

unlink unlink ×
√

× e
√ √ √ √ √

rmdir rmdir ×
√

× e
√ √ √ √ √

truncate truncate ×
√

×
√ √ √ √ √ √

chmod chmod ×
√

×
√ √ √ √ √ √

stat getattr ×
√

×
√ √ √ √ √ √

AVFS

AVFS fn Regular Restart Re-FUSE

create mknod × × × e ×
√ √ √ √

mkdir mkdir × × × e ×
√ √ √ √

symlink symlink × × × e ×
√ √ √ √

link link × × × e ×
√ √ √ √

rename rename × × × e ×
√ √ √ √

open open ×
√

×
√ √ √ √ √ √

read read ×
√

×
√ √ √ √ √ √

readdir readdir ×
√

×
√ √ √ √ √ √

readlink readlink ×
√

×
√ √ √ √ √ √

write write × × ×
√

×
√ √ √ √

unlink unlink × × × e ×
√ √ √ √

rmdir rmdir × × × e ×
√ √ √ √

truncate truncate × × ×
√

×
√ √ √ √

chmod chmod ×
√

×
√ √ √ √ √ √

stat getattr ×
√

×
√ √ √ √ √ √

Table 4. Fault Study. The table shows the affect of fault in-
jections on the behavior of NTFS-3g, SSHFS and AVFS, respec-
tively. Each row presents the results of a single experiment, and the
columns show (in left-to-right order) the intended operation, the
file system function that was fault injected, how it affectedthe ap-
plication, whether the file system was consistent after the fault, and
whether the file system was usable for other operations. Various
symbols are used to condense the presentation. For application be-
havior, “

√
”: application observed successful completion of the operation;

“ ×”: application received the error “software caused connection abort”;

“e”: application incorrectly received an error.

File System Injected Faults Sort OpenSSH Postmark

+ Re-FUSE (Survived) (Survived) (Survived)

NTFS-3g 100 100 100 100

SSHFS 100 100 100 100

AVFS 100 100 100 100

Table 5. Random Fault Injection. The table shows the af-
fect of randomly injected crashes on the three file systems sup-
ported with Re-FUSE. The second column refers to the total num-
ber of random (in terms of the crash point in the code) crashes
injected into the file system during the span of time it is serving a
macro-benchmark. The crashes are injected by sending the signal
SIGSEGV to the file system process periodically. The right-most
three columns indicate the number of survived crashes by there-
inforced file systems during each macro-benchmark. We do notin-
clude the results of the experiments on the vanilla versionsof these
file systems in the table; those file systems remain unusable after
the first crash even though we inject the crash at varied time-points
during the workload.

We use three commonly-used macro-benchmarks to help
analyze file-system robustness (and later, performance).
Specifically, we utilize the sort utility, Postmark [Katcher
1997], and OpenSSH [Sourceforge 2010c]. The sort bench-
mark represents data-manipulation workloads, Postmark
represents I/O-intensive workloads, and OpenSSH repre-
sents user-desktop workloads.

Table 5 presents the result of our study. From the table,
Re-FUSE ensures that the application continues executing
through the failures, thus making progress. We also found
that a vanilla user-level file system with no support for fault
handling cannot tolerate crashes (not shown in the table).

In summary, both from controlled and random fault injec-
tion experiments, we clearly see the usefulness of Re-FUSE
in recovering from user-level file system crashes. In a stan-
dard environment, a user-level file system is always unusable
after the crash and applications using the user-level file sys-
tem are killed. Moreover, in many cases, the file system is
also left in an inconsistent state. In contrast, Re-FUSE, upon
detecting a user-level file system crash, transparently restarts
the crashed user-level file system and restores it to a consis-
tent and usable state. It is important to understand that even
though Re-FUSE recovers cleanly from both controlled and
random faults, it is still limited in its applicability (i.e., Re-
FUSE only works for faults that are both fail-stop and tran-
sient and for file systems that strictly adhere to the reference
file-system model described in Section 3.3).

6.3 Performance

Though fault-tolerance is our primary goal, we also evalu-
ate the performance of Re-FUSE in the context of regular
operations and recovery time.



ntfs ntfs+ overhead sshfs sshfs+ Overhead avfs avfs+ Overhead
Benchmark Re-FUSE % Re-FUSE % Re-FUSE %
Sequential read 9.2 9.2 0.0 91.8 91.9 0.1 17.1 17.2 0.6
Sequential write 13.1 14.2 8.4 519.7 519.8 0.0 17.9 17.9 0.0
Random read 150.5 150.5 0.0 58.6 59.5 1.5 154.4 154.4 0.0
Random write 11.3 12.4 9.7 90.4 90.8 0.4 53.2 53.7 0.9
Create 20.6 23.2 12.6 485.7 485.8 0.0 17.1 17.2 0.6
Delete 1.4 1.4 0.0 2.9 3.0 3.4 1.6 1.6 0.0

Table 6. Microbenchmarks. This table compares the execution time (in seconds) for various benchmarks for restartable versions of
ntfs-3g, sshfs, avfs (on Re-FUSE) against their regular versions on the unmodified kernel. Sequential reads/writes are4 KB at a time to a
1-GB file. Random reads/writes are 4 KB at a time to 100 MB of a 1-GB file. Create/delete copies/removes 1000 files each of size1MB to/from
the file system respectively. All workloads use a cold file-system cache.

ntfs ntfs+ Overhead sshfs sshfs+ Overhead avfs avfs+ Overhead
Benchmark Re-FUSE % Re-FUSE % Re-FUSE %
Sort 133.5 134.2 0.5 145.0 145.2 0.1 129.0 130.3 1.0
OpenSSH 32.5 32.5 0.0 55.8 56.4 1.1 28.9 29.3 1.4
PostMark 112.0 113.0 0.9 5683 5689 0.1 141.0 143.0 1.4

Table 7. Macrobenchmarks.The table presents the performance (in seconds) of different benchmarks running on both standard and
restartable versions of ntfs-3g, sshfs, and avfs. The sort benchmark (CPU intensive) sorts roughly 100MB of text using the command-line sort
utility. For the OpenSSH benchmark (CPU+I/O intensive), wemeasure the time to copy, untar, configure, and make the OpenSSH 4.51 source
code. PostMark (I/O intensive) parameters are: 3000 files (sizes 4KB to 4MB), 60000 transactions, and 50/50 read/appendand create/delete
biases.

6.3.1 Regular Operations

We now evaluate the performance of Re-FUSE. Specifically,
we measure the overhead of our system during regular op-
erations and also during user-level file system crashes to see
if a user-level file system running on Re-FUSE has accept-
able overheads. We use both micro- and macro-benchmarks
to evaluate the overheads during regular operation.

Micro-benchmarks help analyze file-system performance
for frequently performed operations in isolation. We use se-
quential read/write, random read/write, create, and delete
operations as our micro benchmarks. These operations ex-
ercise the most frequently accessed code paths in file sys-
tems. The caption in Table 6 describes our micro-benchmark
configuration in more detail. We also use the previously-
described macro-benchmarks sort, Postmark, and OpenSSH;
the caption in Table 7 describes the exact configuration pa-
rameters for our experiments.

Table 6 and Table 7 show the results of micro- and macro-
benchmarks respectively. From the tables, we can see that for
both micro- and macro-benchmarks, Re-FUSE has minimal
overhead, often less than 3%. The overheads are small due to
in-memory logging and our optimization through page ver-
sioning (or socket buffer caching in the context of SSHFS).
These results show that the additional reliability Re-FUSE
achieves comes with negligible overhead for common file-
system workloads, thus removing one important barrier of
adoption for Re-FUSE.

Vanilla Re-FUSE

Total Total Restart

File System Time (s) Time (s) Time (ms)

NTFS-3g 133.5 134.45 65.54

SSHFS 145.0 145.4 255.8

AVFS 129.0 130.7 6.0

Table 8. Restart Time in Re-FUSE.The table shows the
impact of a single restart on the restartable versions of thefile
systems. The benchmark used is sort and the restart is triggered
approximately mid-way through the benchmark.

6.3.2 Recovery Time

We now measure the overhead of recovery time in Re-FUSE.
Recovery time is the time Re-FUSE takes to restart and re-
store the state of the crashed user-level file system. To mea-
sure the recovery-time overhead, we ran the sort benchmark
for ten times and crashed the file system half-way through
each run. Sort is a good benchmark for testing recovery as
it makes many I/O system calls and both reads and updates
file-system state.

Table 8 shows the elapsed time and the average time Re-
FUSE spent in restoring the crashed user-level file system
state. The restoration process includes restart of the user-
level file-system process and restoring its in-memory state.
From the table, we can see that the restart time is in the order
of a few milliseconds. The application also does not see any
observable increase in its execution time due to the user-level
file-system crash.



7. Conclusions
“Failure is not falling down but refusing to get up.”

–Chinese Proverb

Software imperfections are common and are a fact of
life especially for code that has not been well tested. Even
though user-level file systems crashes are isolated from the
operating system by FUSE, the reliability of individual file
systems has not necessarily improved. File systems still re-
main unavailable to applications after a crash. Re-FUSE em-
braces the fact that failures sometimes occur and provides a
framework to transparently restart crashed file systems.

We develop a number of new techniques to enable effi-
cient and correct user-level file system restartability. Inpar-
ticular, request tagging allows Re-FUSE to differentiate be-
tween concurrently-serviced requests; system-call logging
enables Re-FUSE to track (and eventually, replay) the se-
quence of operations performed by a user-level file sys-
tem; non-interruptible system calls ensure that user-level
file-system threads move to a reasonable state before file sys-
tem recovery begins. Through experiments, we demonstrate
that our techniques are reasonable in their performance over-
heads and effective at detection and recovery from a certain
class of faults.

In the future, much work can be done to enhance Re-
FUSE. More file systems can be ported to use it, and more
experience with the real pitfalls of running a file system
within such a framework can be obtained. It is unlikely
developers will ever build the “perfect” file system; Re-
FUSE presents one way to tolerate these imperfections.
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