

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
EuroSys’11, April 10–13, 2011, Salzburg, Austria.
Copyright © 2011 ACM 978-1-4503-0634-8/11/04…$10.00..

Is Co-scheduling Too Expensive for SMP VMs?

Orathai Sukwong

Electrical and Computer Engineering
Carnegie Mellon University, Pittsburgh, PA, USA

osukwong@ece.cmu.edu

Hyong S. Kim

Electrical and Computer Engineering
Carnegie Mellon University, Pittsburgh, PA, USA

kim@ece.cmu.edu

Abstract

Symmetric multiprocessing (SMP) virtual machines (VMs)
allow users to take advantage of a multiprocessor
infrastructure. Despite the advantage, SMP VMs can cause
synchronization latency to increase significantly, depending
on task scheduling. In this paper, we show that even if a
SMP VM runs non-concurrent applications, the
synchronization latency problem can still occur due to
synchronization in the VM kernel.

Our experiments show that both of the widely used open
source hypervisors, Xen and KVM, with the default
schedulers are susceptible to the synchronization latency
problem. To remediate this problem, previous works
propose a co-scheduling solution where virtual CPUs
(vCPUs) of a SMP VM are scheduled simultaneously.
However, the co-scheduling approach can cause CPU
fragmentation that reduces CPU utilization, priority
inversion that degrades I/O performance, and execution
delay, leading to deployment impediment. We propose a
balance scheduling algorithm which simply balances vCPU
siblings on different physical CPUs without forcing the
vCPUs to be scheduled simultaneously. Balance scheduling
can achieve similar or (up to 8%) better application
performance than co-scheduling without the co-scheduling
drawbacks, thereby benefiting various SMP VMs. The
evaluation is thoroughly conducted against both concurrent
and non-concurrent applications with CPU-bound, I/O-
bound, and network-bound workloads in KVM. For
empirical comparison, we also implement the co-
scheduling algorithm on top of KVM’s Completely Fair
Scheduler (CFS). Compared to the synchronization-
unaware CFS, balance scheduling can significantly
improve application performance in a SMP VM (e.g.
reduce the average TPC-W response time by up to 85%).

Categories and Subject Descriptors D.4.1 [Process

Management]: Scheduling.

General Terms Algorithms, Experimentation,
Performance.

Keywords Virtualization, Synchronization.

1. Introduction

Virtualization provides a flexible computing platform for
cloud computing (e.g. Amazon EC2) and server
consolidation. It helps to maximize physical resource
utilization and simplify system and infrastructure
management. Virtualization mainly consists of a software
layer between an operating system (OS) and hardware
called a hypervisor, and a software version of a machine
called a virtual machine (VM) or guest. Examples of
hypervisors are VMware ESXi [VMware2010c], Xen
[Barham2003] and KVM [KVM2008]. Like a real
machine, a VM can run any application, OS or kernel
without modifications. A VM can be configured with
different hardware settings, such as the number of virtual
CPUs (vCPUs) and the size of hard disk and memory. A
VM with multiple vCPUs, which behave identically, is
called a symmetric multiprocessing (SMP) VM. As a rule
of thumb, a SMP VM should not have more vCPUs than
available physical CPUs [VMware2010a], a practice
followed in this paper.

Virtualization can cause problems which do not exist in
a non-virtualized environment. For instance, a spinlock
(used for kernel synchronization) in a non-virtualized
environment is assumed to be held for a short period of
time and does not get preempted. But a spinlock held by a
VM can be preempted due to vCPU preemption
[Uhlig2004], vastly increasing synchronization latency and
potentially blocking the progress of other vCPUs waiting to
acquire the same lock. Combined with preemptible
synchronization in a concurrent application inside a SMP
VM, the synchronization latency problem in the VM can be
severe, resulting in significant performance degradation.

Deducing from the results of our experiments (Section
5.3.1), the default schedulers of several current hypervisors
(Xen and KVM) still seem to be unaware of the
synchronization latency problem. To reduce
synchronization latency, previous works propose a co-
scheduling solution where vCPUs of a SMP VM are
scheduled simultaneously. Recently proposed systems
[Weng2009, Bai2010] selectively apply co-scheduling only
to SMP VMs running concurrent applications because a
non-concurrent application has no application
synchronization and thus may not significantly benefit from

co-scheduling. In this paper, we show that a SMP VM
running a non-concurrent application, such as a single-
threaded, synchronization-free and I/O-bound task, can also
benefit from co-scheduling due to synchronization in the
guest OS.

Nonetheless, co-scheduling can still cause CPU
fragmentation, priority inversion [Lee1997] and execution
delay. These drawbacks can hinder deployment of various
SMP VMs. For example, VMware’s co-scheduling solution
[VMware2010b] tries to maintain synchronous progress of
vCPU siblings by deferring the advanced vCPUs until the
slower ones catch up. This can be too rigorous for a SMP
VM running a minimal synchronization application, as
shown in Section 5.3.1.

We propose the balance scheduling algorithm which
provides application performance similarly to or better than
that of the traditional co-scheduling approach without the
co-scheduling drawbacks. The concept of balance
scheduling is simple – balancing vCPU siblings on
different CPUs without precisely scheduling the vCPUs at
the same time. This is easily accomplished by dynamically
setting CPU affinity of vCPUs so that no two vCPU
siblings are in the same CPU runqueue. We implement the
balance scheduling algorithm on top of KVM’s scheduler
(Completely Fair Scheduler – CFS [Molnar2007]) in the
Linux kernel.

For empirical comparisons, we also implement a co-
scheduling algorithm, called dynamic time-slice (DT) co-
scheduling, based on CFS to avoid the impact of different
resource optimizations found in different hypervisors. DT
co-scheduling should perform similarly to classic co-
scheduling, despite the differences in implementation. Our
co-scheduling implementation is based on CFS with
dynamic time slice, while the previous implementation
relies on a scheduler with static time slice. Compared to the
co-scheduling algorithm [Ousterhout1982], DT co-
scheduling has less computational complexity and does not
incur CPU fragmentation. The expected synchronization
latency of the DT co-scheduling algorithm is theoretically
the lower-bound of the co-scheduling algorithm (details in
Section 5.2.2).

Because VMs can run many types of programs, we
extensively evaluate the scheduling algorithms against both
non-concurrent and concurrent applications with various
degrees of synchronization. We also test them with
different workloads (CPU-bound, I/O-bound and network-
bound). The empirical results show that balance scheduling
can significantly improve application performance (e.g.
reducing the average TPC-W response time by up to 85%
compared to CFS). Balance scheduling also yield similar or
better application performance (e.g. up to 8% higher X264
throughput) than co-scheduling without the drawbacks of
co-scheduling, thus benefiting many SMP VMs.

We also evaluate balance scheduling against affinity-
based scheduling [Vaddagiri2009]. Both balance
scheduling and affinity-based scheduling similarly

manipulate each vCPUs’ CPU affinity. Unlike affinity-
based scheduling (static configuration), balance scheduling
can potentially adapt to load changes. Balance scheduling
dynamically sets CPU affinity before a scheduler assigns a
runqueue to a vCPU, allowing the vCPU to run on the
least-loaded CPU where there is no vCPU siblings. Load is
measured as the number of runnable tasks in a per-CPU
runqueue.

This paper makes the following contributions:

• We show that a SMP VM running a non-concurrent
application can also suffer from the synchronization
latency problem due to synchronization in the guest OS.

• We propose the balance scheduling algorithm and
present its performance analysis. We also compare the
computational complexity of the balance scheduling
and co-scheduling algorithms.

• We implement the balance scheduling and co-
scheduling algorithms on top of CFS for empirical
comparison. We theoretically and empirically show that
our co-scheduling implementation is a refined variation
of classic co-scheduling.

• We perform a thorough evaluation on the balance
scheduling, co-scheduling and affinity-based scheduling
algorithms, in addition to CFS.

The rest of this paper is organized as follows. Section 2
elaborates on the synchronization latency problem. Section
3 describes the co-scheduling approach. Section 4 presents
our proposed balance scheduling algorithm. Section 5
discusses the evaluation. Section 6 describes related work.
Section 7 is the conclusion.

2. Synchronization in SMP VMs

2.1 Lock Primitive

In a concurrent program, a lock primitive is used to provide
synchronization among concurrent threads. Different OSes
may support different types of locking. Typically there are
two major types of lock primitives [Fischer2005].

Semaphore/Mutex (non-busy-wait). The thread that is
waiting for this lock can be blocked and go to sleep,
allowing the scheduler to context switch to another
runnable thread. This lock primitive is normally used in
applications where synchronization may take long to
complete (e.g. waiting to receive a network packet).

Spinlock (busy-wait). A spinlock is used when
synchronization is expected to take only a short amount of
time. Thus, it is inefficient to perform context switching.
The lock-waiter thread keeps spinning CPU cycles until it
successfully acquires the lock. Spinlocks are simple and
usually used in kernel. An OS kernel typically does not
preempt a kernel thread which is holding a spinlock. With
virtualization, a spinlock in a VM may be preempted due to
vCPU preemption.

2.2 Synchronization latency

Synchronization latency is the amount of time it takes a
thread to successfully acquire a lock. Synchronization
latency in a SMP VM is simply the lock latency
experienced by vCPUs of a VM. There are two causes of
synchronization latency: task scheduling and preemption or
blocking. The hypervisor scheduler can preempt vCPUs at
any time, regardless of what they are executing.

Synchronization latency depends on task scheduling
when two or more vCPUs simultaneously want the same
lock and this lock is blocked or preempted, as shown in
Figure 1B. Otherwise, the latency is equal to or less than
the amount of time it takes the lock-holder thread to finish
synchronization and release the lock (TH) as shown in
Figure 1A.

Figure 1A. Synchronization latency without preemption.

Figure 1B. Synchronization latency with preemption.

Normally, a hypervisor scheduler, such as CFS or Xen’s
Credit Scheduler [Yaron2007], allows vCPUs to be
scheduled to run on any CPU. It is possible that the lock-
waiter thread can be scheduled before the lock-holder
thread when a lock-holder thread is preempted, as shown in
Figure 1B. We call this task scheduling situation vCPU
stacking. In the worst case scenario, vCPU1 has to wait
Tpreempt + Tperiod, as opposed to Tpreempt + TH. Tpreempt is
measured from the time that vCPU0 is preempted until one
of these vCPUs is re-scheduled, and TTS is a time slice of a
vCPU, assuming all time slices are the same. Normally, TH
is in the order of microseconds and Tperiod is in the order of
milliseconds. The worst case latency may increase to
several milliseconds. When waiting for a spinlock, many
CPU cycles will also be wasted.

3. Co-scheduling

Ousterhout proposed a co-scheduling algorithm
[Ousterhout1982] that schedules a set of concurrent threads
simultaneously to reduce synchronization latency. Several
previous works [VMware2008, Weng2009, Bai2010] apply
co-scheduling to SMP VMs. As shown in Figure 2, co-

scheduling can significantly reduce synchronization latency
(from Tpreempt + Tperiod to Tpreempt + TH'). Note that co-
scheduling cannot prevent preemption and eliminate
Tpreempt, as shown in Figure 2.

A simple way to co-schedule a set of tasks is finding a
time slice that has a sufficient number of available physical
CPUs to run all tasks, assuming every time slice has the
same size. These tasks are delayed until such a time slice is
found. This approach causes CPU fragmentation and
priority inversion [Lee1997, VMware2008].

Figure 2. Synchronization latency with co-scheduling.

3.1 CPU fragmentation

As shown in Figure 3, with the co-scheduling approach,
vCPU0 and vCPU1 cannot be scheduled until T1, although
both become runnable at T0 because there is only one CPU
idle at T0. This is called CPU fragmentation, which can
reduce CPU utilization and also delay the vCPU execution.

Figure 3. CPU fragmentation in co-scheduling.

3.2 Priority Inversion

Priority inversion is where a higher priority task is
scheduled after a lower priority task. For example, an I/O-
bound job is given a priority to run whenever it is ready.
However, it cannot run because all CPUs are allocated to
the co-scheduled tasks. This problem can adversely affect
interactive or I/O-bound jobs, and under-utilize other
resources (e.g. disks). As seen in Figure 3, when an I/O-
bound job is ready between T0 and T1, the I/O job has to
wait until T2 because the scheduler already assigns the slot
T1 on both CPUs to vCPU0 and vCPU1, given that both
vCPUs are runnable since T0. The longer the time slice of
vCPU1 (T2-T1), the longer the disk sits idle and the higher
the I/O latency, for example.

4. Balance Scheduling

4.1 Description

To alleviate the synchronization latency problem, we
propose the balance scheduling algorithm which balances

vCPU0

vCPU1CPU1

T0 T1TPeriod

CPU0

TH

vCPU1 vCPU0

CPU1 vCPU0

vCPU1

T0 T1 T2

CPU0

vCPU1

vCPU0

Preempt Spin-Wait Lock Released

TPeriodTpreempt

Lock Latency (vCPU1)

Stacking vCPUs

TTS

vCPU1

vCPU0

CPU1

T0 T1

CPU0

vCPU1

vCPU0

Preempt

TPeriod
Tpreempt

Lock Latency (vCPU1)

TH’

CPU0

CPU1

XXX vCPU0

vCPU1

XXX

T0 T1 T2 T3

vCPU0

vCPU1

T4

I/O

Time Progress

vCPU siblings on different physical CPUs without
precisely scheduling the vCPUs simultaneously. It is
simply achieved by dynamically setting CPU affinity of
vCPUs so that no two vCPU siblings are in the same CPU’s
runqueue. Unlike co-scheduling, it does not incur CPU
fragmentation, priority inversion or execution delay.

4.2 Severity of the vCPU-Stacking Problem

Balance scheduling can be considered a probabilistic type
of co-scheduling. It increases the chance of vCPU siblings
being scheduled simultaneously by reducing the likelihood
of the vCPU-stacking situation (described in Section 2.2).
To estimate the probability of the vCPU-stacking
occurrence, we empirically measure how often KVM’s
CFS scheduler places vCPU siblings in the same CPU’s
runqueue when running one or more CPU-intensive SMP
VMs. We run three experiments: one, two and three four-
vCPU VMs with our CPU-bound workload (described in
Section 5.1) in a four-CPU host. Each CPU runqueue is
examined every 700 microseconds to see what tasks are in
the queues by inspecting /proc/sched_debug. We then
count the number of samples where the runqueue has two,
three and four vCPU siblings in the same runqueue.

As shown in Table 1, the risk of vCPU siblings being
stacked grows as the number of VMs increases (the
runqueue size also increases). When only one VM is
running in the host, the chance that more than one vCPU
sibling will be running sequentially is not significant
(~6%). When the number of VMs increases to two, the
chance substantially increases to 43.13%. Stacking vCPUs
can undermine an illusion of synchronous progress of
vCPUs, expected from the guest OS [VMware2010].
Without this illusion, the guest OS may malfunction or
panic.

VMs
vCPUs in the same runqueue > 1 vCPU in

the same

runqueue
2 3 4

1 5.518% 0.045% 0.001% 5.564%

2 31.903% 10.717% 0.507% 43.127%

3 29.730% 12.091% 4.111% 45.932%

Table 1. The probability of vCPU-stacking.

4.3 Computational Complexity Analysis

We compare the computational complexity of balance
scheduling and co-scheduling. Assuming each time slice is
the same, the pseudo code of the co-scheduling algorithm
for scheduling k vCPUs of a SMP VM is described in
Algorithm 1. According to the pseudo code, the
computational complexity of the co-scheduling algorithm is
O(NR) where N is the number of physical CPUs and R is
the runqueue size.

The pseudo code of the balance scheduling algorithm is
shown in Algorithm 2. The computational complexity of
balance scheduling is O(N) because the number of vCPUs

is always less than or equal to the number of CPUs. By
fixing N, the complexity of balance scheduling and co-
scheduling becomes O(1) and O(R) respectively. Therefore,
balance scheduling has less computational complexity than
co-scheduling.

 Algorithm 1: Co-scheduling

for each time slot i
 available_cpus ← 0
 for each CPU j
 if time slot i on CPU j is idle
 increment available_cpus by 1
 end if

 if available_cpus ≥ k
 assign vCPUs to available CPUs
 return

 end if

 end for each

 end for each

 Algorithm 2: Balance Scheduling

 all_cpus ← set of all physical CPUs
 if (task T has not been assigned a runqueue)

 and (task T is a vCPU)
 VMID ← Parent PID of task T
 used_cpus ← {}
 for each vCPU v of VMID
 add CPU that v is on in used_cpus
 end for each

 CPUS of task T ← all_cpus – used_cpus
end if

4.4 Performance Analysis

We theoretically show the synchronization latency
improvement in balance scheduling compared to CFS, with
the different numbers of available physical CPUs. We also
estimate the impact on application performance.

As mentioned earlier, task scheduling can affect the lock
latency when the lock is needed by two or more vCPUs and
also preempted. We calculate the expected lock latency of
balance scheduling and CFS using the equations in
Appendix A. The following assumptions are made: each
task in a runqueue has the same weight, each runqueue has
the same size, the average lock holding time is one
microsecond and two vCPUs need to acquire the same lock
simultaneously. As shown in Figure 4A, the expected lock
latency increases as the runqueue size grows. Intuitively,
when the runqueue size is one (only one vCPU in the
runqueue), balance scheduling and CFS are practically the
same. The expected lock latency also lowers as the number
of CPUs increases due to decrease in the vCPU-stacking
probability. Balance scheduling can reduce the expected
latency more than CFS as balance scheduling avoids vCPU

stacking. As shown in Figure 4B, balance scheduling can
significantly improve the expected lock latency compared
to CFS (more than 14.4% for four CPUs), when the
runqueue size is less than six. The experiments in Section
5.3.6 show that the average runqueue size is practically
about 4-6, even if a host has many threads.

Figure 4A. The expected lock latency in balance
scheduling and CFS.

Figure 4B. The expected lock latency improvement in
balance scheduling compared to CFS.

Quantifying variation in application performance due to the
change in synchronization latency is difficult.
Conceptually, the impact of lock latency on application
performance should be similar to a step function. As long
as lock latency does not exceed a threshold leading to an
operation timeout, a change in application performance
should appear insignificant. Otherwise, the change can be
substantial. For example, an application has to send five
TCP packets. We assume the application takes 100 locks
per second and the TCP average response time is 10
milliseconds or greater. TCP transmission timeout is 200
milliseconds by default in Linux. If the lock latency

increases from one to two microseconds without any TCP
retransmission, the response time of each packet will be
increased by at most 20 microseconds, which is 0.2% or
less increase in the average response times. But if the lock
latency exceeds the threshold causing TCP timeout and a
retransmission, then the average response time becomes
50.004 milliseconds ((50 + 200 + 0.02)/5) or greater, which
is a 400% increase in the average response time. Balance
scheduling is designed to reduce the likelihood that the lock
latency becomes exceedingly high. High lock latency
usually occurs when a scheduler stacks vCPUs. As shown
in Section 5.3.2, balance scheduling causes no TCP
retransmission in TPC-W, but CFS does.

5. Evaluation

We extensively evaluate how balance scheduling, co-
scheduling, affinity-based scheduling and CFS (KVM’s
default scheduler) improve application performance. The
experiments are conducted with applications ranging from
single-threaded and synchronization-free applications to
concurrent applications with different degrees of
synchronization. The applications also carry different types
of workloads (CPU-bound, I/O-bound and network-bound)
in various scenarios (combinations of SMP and non-SMP
VMs run concurrently in the host).

5.1 Experimental Setup

All experiments run on a physical machine with Intel Core2
Quad CPU Q8400 2.66GHz and 4 GB of RAM with 1Gbit
Network card. The physical host runs Fedora Linux kernel
2.6.33 with QEMU 0.11.0. The guest OSes are either
Fedora 12 or 13. The selected applications are Pi,
HackBench, X.264, Compile, TPC-W, Dell DVDstore,
BZip2, Tar, TTCP, Ping, Bonnie++, our synthesized disk
and CPU workloads, and our multiple-independent-process
workload. Where relevant we use the fourth extended file
system (ext4) [Mathur2007] in the experiments.

Pi [Yee2010] is a multi-threaded and CPU-bound program
entirely fitting in the memory. It calculates 100,000,000
digits of pi using the Chudnovsky Formula. We use the
computing time as a performance metric.

HackBench [HackBench2008] is a multi-threaded program
measuring Unix-socket (or pipe) performance. We run
HackBench using four threads with 10,000 loops. The
completion time (seconds) is used as a metric.

X.264 [Phoronix2010] is a multi-threaded and CPU-bound
application, which performs H.264/AVC video encoding. It
reports the average throughput in frames per second.

Compile is a compilation test on libvirt library using
rpmbuild tool (a multi-process program). We measure the
amount of time it takes to compile (in seconds).

TPC-W [TPC2000] is a transactional web benchmark using
multiple web interactions to simulate a retail store’s

2
4

16

64
0

10
20

30

0

5

10

15

20

Runqueue Size
CPUS

E
x
p

e
c
te

d
 L

a
te

n
c
y
 (

m
s
)

Balance

Default/CFS

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

Runqueue Size

L
a
te

n
c
y
 I

m
p
ro

v
e
m

e
n
t

b
y
 B

a
la

n
c
e
 (

%
)

2 CPUs

4 CPUs

16 CPUs

64 CPUs

activities. We use Apache HTTP server version 2.2.14 for
the proxy server, Tomcat5 version 5.5.27 for the web server
and MySQL version 5.1.44 for the database server. These
servers are multi-threaded applications.

Dell DVD Store (DVDstore) [Dell2007] is an open source
simulation of an online ecommerce site. We use MySQL
server 5.1.45 and Apache HTTP Server 2.2.15 for the
database and web servers running in the same VM. 100
clients with five-second thinking time concurrently connect
from another physical machine located on the same network
for three minutes. The average response time is used as a
performance metric.

BZip2 and Tar are single-thread data compressor programs.
We use BZip2 to compress a 460 MB file and use Tar to
decompress a 1.1GB file (Untar). We measure the time it
takes to complete the task.

TTCP [TTCP1996] is a single-thread socket-based
application that measures TCP and UDP throughput (kB/s)
between two systems.

Ping is a single-thread and network-bound program that
sends ping packets to another machine located on the same
network.

Bonnie++ [Coker2001] is an I/O benchmark measuring hard
drive and file system performance. By default, it creates one
thread for each test, except the seek test that uses three
threads.

Our disk-bound workload is a single-thread and disk-I/O-
bound program of our own creation that sequentially creates,
writes and deletes small files on a local disk. We measure
the time it takes to finish the job.

Our CPU-bound workload is a single-thread and CPU-
bound program primarily consuming only CPU resources
with minimal memory footprint and I/O usage. It runs
infinite loops with simple additions.

Our multiple-independent-process workload consists of
multiple processes that independently run a finite number of
loops with simple arithmetic calculations.

The host CPU utilization is collected using dstat
[Wieërs2010]. The I/O statistics are gathered from
/sys/block/vda/stat. We record the runqueue size of each
physical CPU by sampling /proc/sched_debug every second.
The sample average is the average runqueue size. We
quantify application performance improvement by
calculating a performance speed-up. The speed-up metric of
a scheduling algorithm (SpeedUpSCHED) is computed using
the following equation, where PerfSCHED is the application
performance result achieved by the scheduling algorithm and
PerfCFS is the application performance result achieved by
CFS.

������������ = �� !����� − �� !�#��� !�#�

We create seven experiments for the evaluation.
Experiment 1 shows the degree of the synchronization
problem in several hypervisors (Xen, VMware and KVM).
To eliminate a different resource optimization factor in
different hypervisors, we use only KVM hypervisor for the
rest of the experiments. Experiment 2 and 3 quantify
synchronization latency improvement and efficiency of CPU
resources by each scheduling algorithm respectively.
Experiment 4 measures performance improvement in both
concurrent and non-concurrent applications. Experiment 5
assesses the scalability of the scheduling algorithms.
Experiment 6 determines the scheduling performance and
CPU runqueue sizes, when the machine hosts many VMs.
Experiment 7 shows the performance of SMP and non-SMP
VMs running in the same host.

5.2 Implementation

KVM is seamlessly integrated into the Linux kernel. It has a
loadable kernel module providing the core of virtualization,
and relies on existing Linux kernel modules for the rest of
the functionalities (e.g. a scheduler). In KVM, a VM is a
regular Linux process with vCPU processes, which require a
modified QEMU for device emulation.

We implement the balance scheduling and co-scheduling
algorithms based on CFS. Unlike its predecessors, CFS
dynamically calculates a time slice for each runnable task.
The time slice is calculated as follows, where NT is the
number of tasks in a runqueue, MinPeriod is the minimum
period and MinSlice is the minimum time slice.

 $%&'()*) = +,-./0,12+,-�3,4/

 �� %5� = 6 $%&�� %5� if 89 ≤ $%&'()*)$%&�;%<� × 89 if 89 > $%&'()*) ?
 '%@� �;%<� = ./0,12AB

In version 2.6.33 of the Linux kernel, by default the
minimum time slice is one millisecond, the minimum
period is five milliseconds and all tasks in a runqueue have
the same weight. The time slice calculation and scheduling
decision are made independently on each runqueue (one per
CPU). CFS implements a runqueue as a red-black tree
[Cormen2001], sorted by each task’s vruntime (virtual
runtime in nanoseconds). The scheduler always selects the
task with the smallest vruntime to run next.

5.2.1 Balance scheduling

The balance scheduling algorithm can be easily
implemented. We modify CFS to dynamically set the
cpus_allowed field in each vCPU’s task_struct so that no
two vCPU siblings are in the same runqueue. The

cpus_allowed field indicates a set of CPUs that this task
can run on. This cpus_allowed setting is done before a
runqueue is chosen for a vCPU.

5.2.2 Co-scheduling

The classic co-scheduling algorithm (details in Section 4.3)
is designed with a static-time-slice assumption. This design
cannot be applied to CFS due to its dynamic time slice
calculation. In CFS, the second tasks in the different
runqueues may not be scheduled at the same time, for
example.

We create our version of co-scheduling, called dynamic

time slice (DT) co-scheduling. To schedule vCPUs
simultaneously, we first modify CFS so that it never inserts
any two vCPU siblings in the same runqueue, like in
balance scheduling. We then force the scheduler to
schedule all runnable vCPU siblings simultaneously.
However, this step only occurs when the scheduler
normally selects the first vCPU sibling from a runqueue.
As a result, we still preserve fairness among VMs without
keeping track of vCPUs’ runtime. To force the scheduler
to context switch to the chosen vCPU, we call the
resched_cpu function with the CPU ID. This function sets
TIF_NEED_RESCHED flag on the current task and then
sends an smp_send_reschedule inter-processor interrupt
(IPI) to the targeted CPU. We modify the pick_next_entity
function in sched_fair.c so that it can choose the targeted
vCPU, instead of the lowest vruntime task. Unlike the
previous co-scheduling approach, our DT co-scheduling
algorithm does not incur CPU fragmentation and execution
delay. However, DT co-scheduling may shorten the time
slice of the current task due to premature preemption and
incur additional context switching.

Our DT co-scheduling algorithm is a refined version of
the previous co-scheduling algorithm. It has less
computational complexity than the previous co-scheduling
algorithm (O(N) versus O(NR)). Its expected
synchronization latency is the lower-bound of the previous
co-scheduling algorithm. The expected synchronization
latency of DT co-scheduling is TH + TINT+CTX where TH is
the lock-holding time and TINT+CTX is the amount of time it
takes to send an IPI and perform context switching. Due to
CPU fragmentation, the expected latency of the previous

co-scheduling algorithm is '� + ∑ �,'9�E% − 1GH,IJ . TTS is a
size of time slice. Pi is the probability of having sufficient

CPUs to run all vCPU siblings at time slice i and ∑ �, =H,IJ1. TINT+CTX is normally in the order of microseconds and TTS

is in the order of milliseconds. Therefore, ∑ �,'9�E% −H,IJ1G ≥ '9� > 'LA9M�9N. Moreover, the empirical results
show that the DT co-scheduling algorithm can improve
application performance by up to 6% compared to the
previous co-scheduling algorithm. Please see Appendix B
for more details. Hence, our DT co-scheduling algorithm
should be adequate for the comparative evaluation.

5.2.3 Affinity-based scheduling

We use the virsh vcpupin command to modify the CPU
affinity of vCPUs. At the beginning of each experiment, we
bind each vCPU to a CPU in such a way that the number of
vCPUs per physical CPU is relatively the same and vCPU
siblings cannot be assigned to the same physical CPU.

5.3 Experimental Results

5.3.1 Experiment 1

Experiment 1 shows the degree of the synchronization
problem in several current hypervisors. We run two CPU-
intensive workloads: HackBench (intensive
synchronization) and the multiple-independent-process
workload (no application synchronization) in a four-vCPU
VM along with three one-vCPU VMs running our CPU-
bound workload.

Figure 5. The average completion time with 95%
confidence interval assuming the normal distribution.

As shown in Figure 5, Xen (using the Credit scheduler) and
KVM (CFS) have higher completion times than balance
scheduling on HackBench due to their synchronization-
unaware schedulers. They treat all vCPU siblings as
independent entities. Although VMware ESXi’s scheduler
uses a co-scheduling algorithm to mitigate the
synchronization problem, their algorithm can be too
restrictive for certain applications that barely incur
synchronization. As shown in Figure 5, VMware’s
scheduler has the lowest completion time on HackBench
(9.65% less than balance scheduling approach) because
VMware’s scheduler maintains synchronous progress of
vCPU siblings. However, this also causes VMware’s
scheduler to complete the multiple-independent-process
workload (14.88%) slower than the balance scheduling
approach. VMware’s scheduler stops the advanced vCPUs
until the slow vCPUs catch up [VMware2010b], resulting
in vCPU-execution delay. Note that we confine the
comparison to the CPU-only tests since different
hypervisors may have different optimizations on other
resources (e.g. network and disk I/O).

Xen ESX Bal K33 K35 Xen ESX Bal K33 K35
0

10

20

30

40

50

60

70

80

90

100

A
v
e
ra

g
e
 C

o
m

p
le

ti
o
n
 T

im
e

 (
S

e
c

o
n
d
s
)

HackBench

Multiple Independent Processes

Xen = Xen 4.0.1

ESX = VMware ESXi 4.1

Bal = Balance + KVM (Kernel 2.6.33)

K33 = CFS + KVM (Kernel 2.6.33)

K35 = CFS + KVM (Kernel 2.6.35)

We also create a Windows version of HackBench to test
on a VM with a different guest OS (i.e. Windows Server
2008). The results are consistent with our findings from the
Fedora guest OS. The Windows VM spends 20.23 and
10.46 seconds using CFS/KVM and balance
scheduling/KVM respectively, while the Fedora VM
spends 20.58 and 9.02 seconds. These results suggest that
the balance scheduling approach can benefit other guest
OSes than Linux.

5.3.2 Experiment 2

The goal of this experiment is to show the improvement on
the synchronization latency by different scheduling
algorithms. We run TPC-W benchmark using three four-
vCPU VMs for the proxy, web and database servers. The
maximum of 250 clients concurrently connect from another
physical machine to the proxy server. The average and 90th
percentile response times experienced by the clients are
reported. We also use ftrace [Edge2009] to monitor the
amount of time that the vCPUs of the proxy server take to
execute the spin_lock function, and use SystemTap
[RedHat2010] to monitor TCP retransmissions in the VMs.

Figure 6A. The spinlock latency CDF of the proxy server.

Figure 6B. The response time statistics of TPC-W.

As shown in Figure 6A, balance scheduling, affinity-
based scheduling and co-scheduling can similarly improve
the average spinlock latency compared to CFS (decreased
by 29.78%, 31.67% and 29.60% respectively). The
significant increase in the spinlock latency caused by CFS
can trigger a TCP timeout leading to TCP retransmissions.
The retransmissions in the proxy server can cause
disruptions in the subsequent servers (the web and database
servers) and eventually affect the overall response time.
From the experiment, we find 1,363 retransmissions
between the proxy and web servers, 399 retransmissions
from the web to database servers, and 38 TCP
retransmissions between the clients and the proxy server
with CFS, while there is no retransmission with the other
scheduling algorithms. These retransmissions severely
degrade the TPC-W performance. In balance scheduling,
affinity-based scheduling and co-scheduling, the average
response time is reduced by 85.04%, 83.53% and 84.62%
respectively, as shown in Figure 6B. These results show
that balance scheduling can significantly improve the
synchronization latency and application performance,
compared to CFS. Balance scheduling also performs
similarly to co-scheduling (achieving about the same
average and 90th percentile response times).

5.3.3 Experiment 3

The synchronization latency problem not only degrades
application performance, but also wastes CPU resources
due to unnecessary CPU spinning. This experiment shows
the improvement in processing efficiency by the different
scheduling algorithms. We run the Bonnie++ benchmark in
a four-vCPU VM along with a two-vCPU VM running the
CPU-bound workload. The two-vCPU VM is used to
simulate a background workload. For each I/O test,
Bonnie++ reports I/O throughput and CPU utilization in the
VM. We use these metrics to calculate throughput per CPU
utilization, which is then used to compute the speed-up.
This speed-up metric indicates the I/O processing
efficiency.

Even though Bonnie++ spawns only a single thread for
each test (except the seek test), it can encounter the
synchronization problem due to intensive disk I/O
processing in the guest OS. Balance scheduling, affinity-
based scheduling and co-scheduling can help reduce
excessive CPU cycles caused by synchronization-unaware
scheduling, thereby having more CPU cycles for useful
work. As shown in Figure 7, balance scheduling, affinity-
based scheduling and co-scheduling significantly increases
the I/O processing efficiency by up to 40%, 45% and 53%
for the read operation (SeqInput); 70%, 73% and 63% for
the write operation (SeqOutput) and 374%, 439% and
382% for the seek operation respectively. The I/O latency
is also improved. As shown in Figure 8, balance
scheduling, affinity-based scheduling and co-scheduling
reduce the I/O read latency by 48%, 23% and 35%,
compared to CFS. The I/O write latency is not improved as

0 50 100 150 200 250 300 350

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

Microseconds

S
p
in

lo
c
k
 L

a
te

n
c
y
 C

D
F

Default/CFS (2.1654,2029.481,19.2872)

CPU Affinity (1.4797,1319.962,6.2344)

Balance (1.5205,186.506,2.8366)

Coschedule (1.5245,422.401,8.3666)

(Mean, Max, Standard Deviation)

Default(CFS) CPU Affinity Balance Coschedule
0

200

400

600

800

1000

1200

1400

1600

1800

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Average

90 Percentile

793

130.6
190

118.7 121.9
177178

1721

much as the read latency due to the disk being a bottleneck.
The gain by each scheduling algorithm, excluding CFS, can
be varied at each trial depending on cache performance.

Figure 7. The speed up of I/O throughput per CPU
utilization of Bonnie++benchmark.

Figure 8. The I/O statistics in the Bonnie VM.

5.3.4 Experiment 4

This experiment shows how much each scheduling algorithm
can improve the performance of applications ranging from
single-threaded programs without any locking, to multi-
threaded programs with different degrees of application
synchronization. We also test the algorithms with different
types of workloads (CPU-bound, I/O-bound and network-
bound). We run two SMP VMs in the host: one four-vCPU
VM running an application, except for TTCP, and one two-
vCPU VM running our CPU workload. This two-vCPU VM
is for simulating a background workload. For TTCP, we run
two four-vCPU VMs in the host: one for a TTCP transmitter
and the other for a TTCP receiver.

For the multi-threaded applications (Pi, HackBench,
X.264, Compile, and DVDstore), affinity-based scheduling,
balance scheduling and co-scheduling similarly improve
the application performance by up to 85% compared to
CFS, as shown in Figure 9. The improvement varies due to
the degree of synchronization in the SMP VM. HackBench
incurs intensive synchronization due to socket sharing in
the guest VM kernel, as opposed to Pi, which incurs a
relatively small degree of application synchronization.

Figure 9. The performance improvement of different
applications using affinity-based, balance and co-scheduling.

Modern kernels are capable of servicing multiple
applications simultaneously. To understand the impact of
kernel synchronization on application performance, we run
two independent (synchronization-free) processes of the
disk workload in the four-vCPU VM. As shown in Figure
10, balance scheduling, affinity-based scheduling, and co-
scheduling reduce the completion time by 35%, 32%, and
31% compared to CFS, respectively, due to file system
synchronization. The improvement in file system
performance increases I/O aggregation as indicated by the
20% reduction in the average I/O write requests. These
results suggest that synchronization can incur in a VM
despite running synchronization-free applications. Balance
scheduling reduces the completion time by 5% compared to
co-scheduling due to additional context switching.

Figure 10. Performance of multiple disk-I/O processes in a
SMP VM.

We also run a single-threaded application (no application
synchronization) in the VM to understand the effect of
synchronization in the guest VM kernel. As shown in
Figure 9, balance scheduling, affinity-based scheduling and
co-scheduling improve TTCP performance by 26%, 27%
and 18%, Untar performance by 16%, 11% and 20%, and
BZip2 performance by 6%, 4% and 5% compared to CFS
respectively. The improvement depends on the degree of

-50 0 50 100 150 200 250 300 350 400 450

SeqOutput PerChr

SeqOutput Block

SeqOutput Rewrite

SeqInput PerChr

SeqInput Block

Random Seeks

SeqCreate Create

SeqCreate Read

SeqCreate Delete

RandomCreate Create

RandomCreate Read

RandomCreate Delete

Throughput Per CPU Speed Up (%) Compared to CFS

CPU Affinity

Balance

Coschedule

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10

read I/O(requests)

read merges(requests)

read sectors(sectors)

read ticks(ms)

write I/O(requests)

write merges(requests)

write sectors(sectors)

write ticks(ms)

io_ticks(ms)

time_in_queue(ms)

I/O Speed Up (%) Compared to CFS

CPU Affinity

Balance

Coschedule

Pi HackBench X264 Compile DVDStore BZip2 Untar TTCP
0

10

20

30

40

50

60

70

80

90

S
p
e
e
d
 U

p
 (

%
)

C
o
m

p
a
re

d
 T

o
 C

F
S

CPU Affinity

Balance

Coschedule

Single-threaded ApplicationsMulti-threaded Applications

Default (CFS) CPU Affinity Balance Coschedule
0

50

100

150

200

250

C
o
m

p
le

ti
o
n
 T

im
e
 (

s
e
c
o
n
d
s
)

Process1

Process2

A
v
e
ra

g
e
 W

ri
te

 I
/O

 R
e
q
u
e
s
ts

0.85

0.9

0.95

1

1.05

1.1

1.15
x 10

4

synchronization in the VM kernel. TTCP mainly relies on
the guest kernel for network processing, while Untar
processes in both user and kernel spaces (for I/O
processing) and BZip2 mainly runs in the user space with
minimal kernel assistance. For TTCP, balance scheduling
has 6% higher TTCP throughput than co-scheduling due to
additional context-switching. For Untar and BZip2, the
completion times vary over 20 trials because the
improvement due to their small degree of kernel
synchronization can be outweighed by cache performance.

Overall, the results show that balance scheduling,
affinity-based scheduling and co-scheduling can benefit
any application that incurs synchronization in either
application or kernel inside a SMP VM. The performance
improvement depends on the degree of synchronization in
the VM. Balance scheduling can improve application
performance up to 6% more than co-scheduling due to
additional context-switching.

Figure 11A. The aggregated throughput of all X.264 VMs
with 95% confidence interval.

Figure 11B. The CPU utilization on the host with 95%
confidence interval.

5.3.5 Experiment 5

This experiment assesses the scalability of each scheduling
algorithm as the number of VMs increases. We keep adding
more four-vCPU VMs running X.264 until reaching the

host’s maximum CPU capacity. We use the aggregated
throughput of all VMs as a performance metric.

As shown in Figure 11A and B, balance scheduling,
affinity-based scheduling and co-scheduling scale better
than CFS due to the synchronization latency problem. Their
X.264 throughputs increase as the number of VMs and the
CPU utilization increases, when the host runs between one
to three VMs. The host reaches its maximum capacity,
when running 3-4 VMs. As shown in Figure 11A, affinity-
based scheduling achieves 3% higher X264 throughput
than balance scheduling due to better cache performance.
When the host has five VMs, the thrashing effect starts to
take place. Performance of all scheduling algorithms
decreases, while the CPU utilization does not. As seen in
Figure 11A and B, balance scheduling yields up to 4%
higher in the X264 throughput than co-scheduling with
about the same amount of CPU resources due to additional
context switching.

5.3.6 Experiment 6

As discussed in Section 4.4, the performance of balance
scheduling theoretically declines as the runqueue size
grows. In this section, we show that in practice the average
runqueue (per CPU) does not exceed six even if the four-
CPU host has more than 24 threads. We run 14 four-vCPU
VMs in the host: one X.264 VM and the rest (13 VMs)
running the CPU workload with a CPULimit program
[Marletta2010]. CPULimit is used to control CPU usage in
the VMs. The maximum CPU usage of the 13 VMs is 8%,
bounded by the maximum CPU capacity in the host. 14
VMs is the maximum number of VMs we can run
concurrently due to the memory capacity. We measure the
X.264 throughput and the runqueue size of each host CPUs.

Figure 12. The average and maximum runqueue size of
four physical CPUs by each scheduling approach.

In this experiment, there are 56 vCPU threads, in addition
to other threads (e.g. QEMU and system threads), alive in
the host. One may expect to have at least 14 tasks per
runqueue. In fact, a runqueue contains only runnable
threads, not threads that are blocked or sleeping. As shown
in Figure 12, as the CPU usage in the 13 VMs increases,

1 2 3 4 5
0

5

10

15

20

25

30

35

40

45

X264 VMs

A
g

g
re

g
a

te
d

 T
h

ro
u

g
h

p
u

t
(F

ra
m

e
s
/s

)

Default(CFS)

CPU Affinity

Balance

Coschedule

1 2 3 4 5
0

20

40

60

80

100

H
o
s
t

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

X264 VMs

Default(CFS)

CPU Affinity

Balance

Coschedule

CFS Aff Bal Co CFS Aff Bal Co CFS Aff Bal Co
0

5

10

15

20

25

30

R
u
n
q
u
e
u
e
 S

iz
e

Maximum

Average

CPULimit 8%CPULimit 5%CPULimit 0%

the average runqueue size of each CPU increases but still
remains less than six, although the maximum runqueue at a
certain moment can go up to 26. Due to the limited number
of runnable threads in the runqueue, balance scheduling
still performs very well even if the host has many VMs
running. As shown in Figure 13, balance scheduling
improves the X.264 throughput by up to 82.69%, 3.8%, and
4.2%, compared to CFS, affinity-based scheduling and co-
scheduling respectively.

Figure 13. The X.264 performance and the host CPU
utilization.

5.3.7 Experiment 7

This experiment shows how the scheduling algorithms
affect performance of both SMP and non-SMP VMs
running in the same host. We run X.264 in four-vCPU
VMs and Ping in a one-vCPU VM. Ping sends an ICMP
packet to another machine every one millisecond for
300,000 times. It goes to sleep after a packet is sent. We
record the X.264 throughput and the standard deviation of
Ping response times (jitter). High jitter can cause an
undesirable effect, for example unusable video rendering.

As shown in Figure 14, balance scheduling has better
Ping jitter (up to 41%) and more aggregated X.264
throughput (up to 8%) than affinity-based scheduling due to
global load balancing. In balance scheduling, the Ping
vCPU should always run in the least-loaded CPU, but it is
not always the case in affinity-based scheduling. By
default, the load balancer is triggered every 60
milliseconds. It is possible that a CPU has more load than
the others for a certain period of time. By design, balance
scheduling allows a vCPU to move to the least-loaded CPU
every time it wakes up, given that the CPU does not have
its siblings. In the affinity-based scheduling, the vCPU has
to run on the same CPU. Hence, balance scheduling can
better adapt to load changes than affinity-based scheduling.
The benefit of load adaptation decreases as the number of
the available CPUs for vCPU siblings decreases.

Balance scheduling has better the X.264 throughput (up
to 8%) and Ping jitter (up to 2.5%) than co-scheduling due
to priority inversion and additional context switching.

Balance scheduling yields (up to 12%) higher aggregated
X.264 throughput than CFS due to the synchronization
latency problem. It also has similar or (up to 27%) higher
Ping jitter than CFS. These results suggest that balance
scheduling can effectively schedule both SMP and non-
SMP VMs without suffering from priority inversion and
global load balancing.

Figure 14. The X.264 performance in SMP VMs and Ping
jitter performance in non-SMP VMs.

5.3.8 Discussion

Application performance degradation in a SMP VM
depends on the degree of synchronization in both
applications and OS inside the VM. As shown in
Experiment 3 and 4, a SMP VM running synchronization-
free applications (no application locks) can also suffer from
the synchronization latency problem because the guest OS
is capable of concurrent processing.

For example, the file system in guest OS can process
multiple read/write requests simultaneously to reduce the
latency perceived by users. Synchronization is required to
provide concurrent modifications on the file system
structure. In Experiment 4, we simultaneously run two
independent disk-I/O processes which continuously create,
read and write a number of files in the same directory. In
the file system, a file or directory is represented by an inode
which can be identified by a unique number within a file
system. An inode contains file information, such as
physical locations of file data, permission, and file size. An
inode for a directory also has a list of inodes, identifying
files in the directory. When two processes concurrently
create new files in the same directory, they need to be
synchronized in order to access and update the directory
inode.

Similar to the file system, the network processing in
guest OS also requires synchronization. For instance, when
the networking layer and a device driver access a buffer
simultaneously, a lock must be held prior to the access. A
buffer (a block of memory) is used to store network
packets. In Experiment 4, we run a single-thread network
application, TTCP, in the SMP VM. TTCP continuously
sends a number of TCP packets to another VM, which will

0% 5% 8%
0

2

4

6

8

10

12

X
2

6
4

 A
v
e

ra
g

e
 T

h
ro

u
g

h
p

u
t
(F

ra
m

e
s
/s

)

Cpulimit

Default/CFS

CPU Affinity

Balance

Coschedule
70

75

80

85

90

95

C
P

U
 U

ti
li
z
a

ti
o
n

 (
%

)

CPU - Default/CFS

CPU - CPU Affinity

CPU - Balance

CPU - Coschedule

CFS Aff Bal Co CFS Aff Bal Co CFS Aff Bal Co
0

10

20

30

A
g

g
re

g
a

te
d

 F
ra

m
e

s
/s

0.4

0.6

0.8

1

P
in

g
 J

it
te

r
(m

s
)

1st X.264 VM 2nd X.264 VM 3rd X.264 VM Standard Deviation of Ping

send TCP ACK packets back upon receiving TCP packets.
For the packet transmission, the networking layer creates
packets and places them in the buffer. The device driver
removes packets from the same buffer and sends to the
network. The networking layer and the device driver
require synchronization to access the shared buffers.
Hence, even if a SMP VM runs a synchronization-free and
network-bound application, the synchronization is still
required in the guest OS.

Due to task scheduling, synchronization latency in a
SMP VM can significantly increase, adversely affecting
application performance. By design, the co-scheduling
algorithm should work exceptionally well with
synchronization-intensive applications because it
synchronizes the execution of vCPU siblings, as shown in
Figure 2. It would be futile to schedule the vCPU siblings
in different time slots, if they often contend on the same
lock. However, if the synchronization is barely required in
a SMP VM, forcing vCPU siblings to be scheduled
simultaneously can result in vCPU-execution delay, leading
to application performance degradation. As shown in
Figure 3, if the vCPUs mostly execute independent jobs,
each vCPU should be able to run as soon as a CPU
becomes available without unnecessary delay.

Unlike co-scheduling, balance scheduling does not force
vCPU siblings to be scheduled simultaneously. It just
balances vCPU siblings on different physical CPUs to
increase a chance of the vCPUs being scheduled
simultaneously. Balance scheduling never delays vCPU
execution. Hence, minimal synchronization applications
should benefit from balance scheduling more than co-
scheduling. As shown in Experiment 1, balance scheduling
has the shortest completion time (13% better than co-
scheduling) on the multiple-independent-process workload
(no application synchronization). But VMware’s co-
scheduling solution has the smallest completion time (10%
better than balance scheduling) on HackBench
(synchronization-intensive application). Theoretically,
balance scheduling should be preferable to co-scheduling
as the degree of synchronization in a SMP VM decreases.
We also evaluate co-scheduling and balance-scheduling
against other concurrent applications with different degree
of synchronization (TPC-W, DVDstore, Compile and
X264). As shown in Experiment 2 and 4, balance
scheduling can improve application performance similarly
to DT co-scheduling with a possible few percentage gain
(e.g. reduce the average response times of TPC-W and
DVDstore by up to 3%). Overall, balance scheduling
exhibits a promising capability in alleviating the
synchronization latency problem without the co-scheduling
drawbacks.

Balance scheduling can also significantly improve
application performance, compared to synchronization-
unaware schedulers, such as Xen and CFS. As shown in
Experiment 1, balance scheduling can complete
HackBench and the multiple-independent-process workload

6% and 56% quicker than Xen/Credit scheduler does,
respectively. Balance scheduling can reduce the average
TPC-W response time by 85% compared to CFS. It also
improves the I/O processing efficiency by up to 40% and
70% for the disk-I/O read and write operations, compared
to CFS. Additionally, balance scheduling can effectively
schedule more SMP VMs than CFS. As shown in
Experiment 5, balance scheduling increases the aggregated
X264 throughput as the number of VMs increases (up to
four VMs). With CFS, the X264 throughput increases,
when the number of VMs increases up to three VMs. Then,
the X264 throughput starts to drop. The X264 throughputs
by CFS are also consistently less than the throughputs by
balance scheduling (up to 15%). The reason is that CFS
wastes more CPU cycles due to the synchronization latency
problem.

Moreover, balance scheduling can potentially adapt to
load changes, unlike affinity-based scheduling (static
configuration). As shown in Experiment 7, balance
scheduling can improve Ping jitter up to 41%, compared to
affinity-based scheduling.

6. Related Work

In the past, without virtualization, Ousterhout
[Ousterhout1982] proposed a co-scheduling algorithm
which schedules concurrent threads simultaneously to
reduce application synchronization latency. Lee et al.
[Lee1997] show that the co-scheduling algorithm can cause
CPU fragmentation, which reduces CPU utilization, and
priority inversion, which reduces I/O performance and
other resource utilization. Later works [Feitelson1992,
Wiseman2003] try to improve on the co-scheduling
algorithm.

With virtualization, the synchronization latency problem
becomes severe; spinlocks in a guest OS can get
preempted. This never happens in a non-virtualized
environment. Uhlig et al. [Uhlig2004] identify this problem
as lock-holder preemption (LHP) in SMP VMs. They
propose several techniques to prevent LHP. The techniques
require augmenting guest OS or installing a special-crafted
device driver, and thus may not be feasible in commodity
OSes (e.g. Windows). Balance scheduling does not prevent
LHP, but alleviates effect of LHP. Even if spinlocks in a
SMP VM are no longer preempted, application locks can
still benefit from balance scheduling.

To mitigate the synchronization latency problem in SMP
VMs, previous works [VMware2008, Weng2009, Bai2010]
propose a co-scheduling solution where vCPU siblings are
scheduled simultaneously. Unlike co-scheduling, balance
scheduling only balances vCPU siblings on different
physical CPUs without forcing the vCPUs to be scheduled
at the same time. Balance scheduling can be easily
implemented and significantly improve application
performance without the complexity and drawbacks found
in co-scheduling (CPU fragmentation, priority inversion
and execution delay).

VMware developed several versions of co-scheduling
for VMware ESXi. The first version, called strict co-

scheduling, is included in VMware ESX 2.x
[VMware2008]. Due to CPU fragmentation, VMware
created relaxed co-scheduling (ESX 3.x) where all vCPU
siblings are stopped and only the lagging vCPUs are started
simultaneously when they are out of synchronization. The
relaxed co-scheduling is further refined in ESX 4.x
[VMware2010b] – stopping only advanced vCPUs, instead
of all vCPUs. Balance scheduling is similar to the relaxed
co-scheduling in a sense that the scheduling operation is
per vCPU. But balance scheduling never delays execution
of a vCPU to wait for another vCPU in order to maintain
synchronous progress of vCPU siblings. Balance
scheduling is also simpler. No discrepancy accruing in
progress of vCPU siblings is required. To avoid the co-
scheduling drawbacks, Weng et al. [Weng2009] limit co-
scheduling to a SMP VM with a concurrent application,
unlike balance scheduling which does not share any co-
scheduling drawbacks, thereby benefiting both concurrent
and non-concurrent SMP VMs.

Jiang et al. [Jiang2009] propose several techniques to
improve KVM performance, such as temporarily increasing
the priority of vCPUs and approximately co-scheduling
vCPU siblings by changing their scheduling class from
SCHED_OTHER (default scheduling class in CFS) to
SCHED_RR (real-time scheduling class). Changing the
priority of vCPUs can affect the fairness and performance
of other VMs; unlike balance scheduling which never
changes scheduling class or priority of vCPUs.

AMD [Langsdorf2010] and Intel [Intel2010] also
provide architectural support for heuristically detecting
contended spinlocks so that the hypervisor can de-schedule
them to reduce excessive CPU cycle use. They add
additional fields in the VM data structure (Pause-Filter-
Count in AMD and PLE_Gap and PLE_Window in Intel).
For example, in Intel, PLE_Gap is an upper bound on the
amount of time between two successive executions of
PAUSE in a loop. PLE_Window is an upper bound on a
guest allowed for a PAUSE loop. According to KVM’s
codes, PLE_Gap is set to 41 and PLE_Window is 4096. It
means that this approach can detect a spinning loop that
lasts around 55 microseconds on a 3GHz CPU. As
mentioned earlier, the synchronization problem incurs not
only by synchronization in applications inside a VM, but
also synchronization in the guest kernel. As shown in
Figure 6A, most spinlocks in VMs last less than 50
microseconds. Hence, this support should help cease
application locks rather than spinlocks in kernel. However,
the values of PLE_Gap and PLE_Window should not be
too small due to the cost of VM_EXIT, (4-5K cycles
[Zhang2008], depending on CPU architectures). VM_EXIT
can also cause performance loss due to transition cost (VM
exit, VM reads, VM writes, VM entry, and TLB flushing
cost).

7. Conclusion

Despite the benefit of parallel processing, SMP VMs can
also increase synchronization latency significantly,
depending on task scheduling. In this paper, we show that a
SMP VM running non-concurrent applications can also
need synchronization for concurrent processing in the guest
OS.

To mitigate the synchronization problem, previous
works have proposed a co-scheduling solution, which
rigorously maintains synchronous scheduling of vCPU
siblings. This approach can be too expensive for SMP VMs
with minimal synchronization due to delay in vCPU
execution. We propose the balance scheduling algorithm,
which simply balances vCPU siblings on different physical
CPUs without strictly scheduling the vCPUs
simultaneously. Balance scheduling can improve
performance of concurrent SMP VMs similarly to co-
scheduling without the co-scheduling drawbacks (CPU
fragmentation, priority inversion and execution delay).
Unlike co-scheduling, balance scheduling can also
effectively schedule SMP VMs with minimal
synchronization; thereby benefiting many SMP VMs. In
practice, most applications, including concurrent
applications, should not demand intensive synchronization.
Minimal synchronization usage is encouraged in concurrent
applications to promote parallelism. Synchronization serves
as the bottleneck in parallel execution. Yet, it is still
necessary in many concurrent applications. Additionally, a
number of existing and legacy applications are still non-
concurrent.

Acknowledgments

We would like to thank Akkarit Sangpetch for insightful
discussions on the implementation issues and John Lanyon
for comments. We would like to also thank our shepherd,
Jacob Gorm Hansen, and the anonymous reviewers for
helpful comments on the paper.

Appendix

A. Expected lock latency calculation

We use Eq. 1 and 2 to calculate the expected lock latency
of CFS and balance scheduling respectively. TH is the
average lock holding time. |RQ| is a runqueue size. |VW| is
the number of vCPUs that want to acquire the same lock,
and |CPU| is the number of available physical CPUs.

 OP. 1 OR��<S�� T(S�&<U2/VWX3Y =
 �ZYW4[\] |_`||ab|cE|ab|dJG!|�.f|9gM|�.f|h

|�.f|] |_`||ab|c|ab|! i +
 E1 − �ZYW4[G j9gk]∑ |�.f|]E,dJG|�.f||ab|dJ cE|ab|dJG!|lm|nop cd] |_`||ab|c|�.f|E|ab|dJG!q

r +
∑ s|�.f|, t|_`|s∏ vE|_`|dJG|�.f|dE[d,dJGw|xy|zon{| t|xy|nop 9}r + |�.f|hr ~ , �ℎ� � � =

]∑] |��| − %|��| − 1c E|��| − 1G%'9�|_`|dE|ab|dJG,IJ c , � =
]|���||��||��| c |��|! − |���|] |��||��|c |�$|! = s E|�.f||_`|G!E|�.f||_`|d|ab|G! −

|�.f||_`|!E|_`|d|ab|G!t , (&� |���| ≥ |����| ≥ |��|
 OP. 2 OR��<S�� T(S�&<U�W3W-4/
= '. k]∑ |���|]E% − 1G|���||��| − 1 c|_`|,I� c −] |��||��|c |���|E|��| − 1G!q

�
+ ∑ s|���|% t |��|v∏ vE|��| − 1G|���| − E* − % − 1Gw|ab|[I,MJ w|ab|,I� '��
+ |���|��

B. Analysis of our DT scheduling

The computation complexity of DT co-scheduling is O(N)
where N is the number of CPUs, according to the pseudo
code in Algorithm 3.

 Algorithm 3: DT Co-scheduling

 all_cpus ← set of all physical CPUs
 if task T is a vCPU

 if task T is not assigned a runqueue
 VMID ← Parent PID of task T
 used_cpus ← {}
 for each vCPU v of VMID
 add CPU that v is on in used_cpus
 end for each

 CPUs of task T ← all_cpus – used_cpus
 else if task T is the first vCPU of the VM to be
 scheduled
 for each vCPU sibling v of task T
 if v is not currently scheduled
 send reschedule interrupt
 context switch to v
 end if

 end for each

 end if

end if

We also run three multi-threaded applications (Pi,
HackBench and DVDstore) to compare the performance of
our DT co-scheduling and the co-scheduling in
[Ousterhout1982]. We mimic the co-scheduling on KVM
by changing vCPUs’ scheduling class from
SCHED_OTHER (CFS) to SCHED_RR (RT scheduling)
with the priority of 20. RT tasks have higher priority than
CFS tasks. By default, the RT period is 1 second and the
RT runtime is 950 milliseconds. This reserved RT runtime
is given to RT tasks first and the rest is allocated to CFS
tasks. We experiment with four combinations of RT
runtime and period: 15ms/30ms, 28ms/30ms,
500ms/1000ms and 950ms/1000ms (default). As shown in
Figure 15, our DT co-scheduling improves DVDStore (I/O
and network-intensive) performance at least 6% better than

the co-scheduling. DT co-scheduling improves HackBench
and Pi performance at least 0.7% and 0.3% better than the
co-scheduling respectively. These results show that our DT
co-scheduling can perform similarly or better than the co-
scheduling without tuning the time slice and period
parameters.

Figure 15. The comparison of application performance
between the SCHED_RR-based co-scheduling and our
DT co-scheduling.

References

[Bai2010] Y. Bai, C. Xu, and Z. Li. “Task-aware based co-scheduling for
virtual machine system”, In Proceedings of the 2010 ACM
Symposium on Applied Computing. SAC '10. ACM, New York, NY,
181-188.

[Barham2003] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.
Ho, R. Neugebauer, I. Pratt, and A. Warfield. 2003. Xen and the art
of virtualization. In Proceedings of the nineteenth ACM symposium
on Operating systems principles (SOSP '03). ACM, New York, NY,
USA, 164-177.

[Coker2001] R. Coker. Bonnie++ version 1.03.
http://www.coker.com.au/Bonnie++/, 2001.

[Cormen2001] T. H. Cormen,, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms, Second Edition. MIT Press and
McGraw-Hill, 2001. Chapter 13: Red-Black Trees, pp. 273–301.

[Dell2007] Dell, Inc. The DVD Store Version 2. http://www. dell
techcenter.com/page/DVD+Store, December, 2007.

[Edge2009] J. Edge. A look at ftrace. http://lwn.net/Articles/ 322666/,
March, 2009. (accessed August 2010).

[Feitelson1992] D. Feitelson, L. Rudolph. Gang scheduling performance
benefits for fine-grain synchronization. Journal of Parallel and
Distributed Computing, 1992.

[Fischer2005] G. Fischer, C. Rodriguez, C. Salzberg, S. Smolski. Linux
Scheduling and Kernel Synchronization. Nov 11, 2005. Prentice Hall
Professional.

[HackBench2008] HackBench, http://people.redhat.com/mingo/cfs-
scheduler/tools/hackbench.c, September 2008.

[Intel2010] Intel. Intel 64 and IA-32 Architectures Software Developer's
Manual. Volume 3B: System Programming Guide, Part 2, June 2010.

[Jiang2009] W. Jiang, Y. Zhou,, Y. Cui, W. Feng, Y. Chen, Y. Shi, and Q.
Wu. CFS Optimizations to KVM Threads on Multi-Core
Environment. In Proceedings of the 2009 15th international
Conference on Parallel and Distributed Systems. ICPADS2009.

[KVM2008] Qumranet. KVM. Kernel Based Virtual Machine.
http://www.linux-kvm.org/, September, 2008.

15ms/30ms 28ms/30ms 950ms/1000ms 500ms/1000ms Dynamic
0

20

40

60

80

100

120

140

160

180

C
o
m

p
le

ti
o
n
 T

im
e
/R

e
s
p
o
n
s
e
 T

im
e
 (

S
e
c
o
n
d
s
)

Pi

HackBench

DVDstore

SCHED_RR (Runtime/Period)

[Langsdorf2010] M. Langsdorf. Patchwork: Support Pause Filter in AMD
processors. https://patchwork.kernel.org/ patch/48624/ (accessed
May 2010).

[Lee1997] W. Lee, M. Frank, V. Lee, K. Mackenzie and L. Rudolph,
Implications of I/O for Gang Scheduled Workloads, Job Scheduling
Strategies for Parallel Processing, pp. 215-237, 1997.

[Marletta2010] A. Marletta. CPU Usage Limiter for Linux.
http://cpulimit.sourceforge.net/ (accessed August 2010).

[Mathur2007] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas,
L. Vivier. The new ext4 filesystem: current status and future plans.
Proceedings of the Linux Symposium. Ottawa, ON, CA: Red Hat.
2007.

[Molnar2007] I. Molnar. CFS design. http://people.redhat.co m/mingo/cfs-
scheduler/sched-design-CFS.txt, May 2007.

[Ousterhout1982] J. Ousterhout, "Scheduling Techniques for Concurrent
Systems,"Proc. 3rd International Conference on Distributed
Computing Systems, October 1982.

[Phoronix2010] Phoronix Test Suite. X.264 Benchmark. http:
//www.phoronix-test-suite.com/index.php?k=downloads (accessed
September 2010)

[RedHat2010] Red Hat, IBM, Hitachi, and Oracle. SystemTap.
http://sourceware.org/systemtap/

[TPC2000] TPC. Transaction Processing Performance Council. TPC-W:
A transactional web e-Commerce benchmark.
http://www.tpc.org/tpcw/, January 2000.

[TTCP1996] TTCP Utility. Test TCP (TTCP) Benchmarking Tool and
Simple Network Traffic Generator. http://www
.pcausa.com/Utilities/pcattcp.htm, 1996.

[Uhlig2004] V. Uhlig, J. LeVasseur, E. Skoglund, and U. Dannowski.
“Towards scalable multiprocessor virtual machines”, In Proceedings
of the 3rd Conference on Virtual Machine Research and Technology
Symposium - Volume 3, 2004. USENIX Association, Berkeley, CA.

[Vaddagiri2009] S. Vaddagiri, B.B. Rao, V. Srinivasan, A.P. Janakiraman,
B. Singh, and V.K. Sukthankar. Scaling software on multi-core
through co-scheduling of related tasks. In Linux Symp., pages 287–
295, 2009.

[VMware2008] Drummonds. VMware, Inc. Co-scheduling SMP VMs in
VMware ESX server. May 2, 2008.
http://communities.vmware.com/docs/DOC-4960.

[VMware2010] VMware, Inc. VMware vSphere 4: The CPU Scheduler in
VMware ESX 4 White Paper.
http://www.vmware.com/files/pdf/perf-vsphere-cpu_scheduler.pdf
(accessed September 2010).

[VMware2010a] VMware, Inc. Performance best practices for VMware
vSphere 4.0. VMware ESX 4.0 and ESXi 4.0.
http://www.vmware.com/pdf/Perf_Best_Practices_vSphere4.0.pdf
(accessed September 2010)

[VMware2010b] VMware, Inc. VMware vSphere 4: The CPU scheduler
in VMware ESX 4.1, September 2010.
http://www.vmware.com/files/pdf/techpaper/VMW_vSphere41_cpu_
schedule_ESX.pdf (accessed September 2010).

[VMware2010c] VMware, Inc. VMware vSphere Hypervisor (ESXi).
http://www.vmware.com/products/vsphere-hypervisor/index.html.
(accessed September 2010).

[Weng2009] C. Weng, Z. Wang, M. Li, and X. Lu. “The hybrid
scheduling framework for virtual machine systems”, In Proceedings
of the 2009 ACM SIGPLAN /SIGOPS international Conference on
Virtual Execution Environments. VEE '09. ACM, New York, NY,
111-120.

[Wieërs2010] D. Wieërs. Dstat: Versatile resource statistics tool.
http://dag.wieers.com/home-made/dstat/.

[Wiseman2003] Y. Wiseman , D. Feitelson, Paired Gang Scheduling,
IEEE Transactions on Parallel and Distributed Systems, v.14 n.6,
p.581-592, June 2003.

[Yaron2007] Yaron. Xen Wiki. Credit Scheduler.
http://wiki.xensource.com/xenwiki/CreditScheduler November,
2007. (accessed August 2010).

[Yee2010] Yee, J. A y-cruncher-A Multi-Threaded Pi-Program.
http://www.numberworld.org/y-cruncher/, August 2010.

[Zhang2008] X. Zhang, Y. Dong. Optimization Xen VMM Based on Intel
Virtualization Technology. International Conference on Internet
Computing in Science and Engineering, 2008 (ICICSE’08).

