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Abstract  

Symmetric multiprocessing (SMP) virtual machines (VMs) 
allow users to take advantage of a multiprocessor 
infrastructure. Despite the advantage, SMP VMs can cause 
synchronization latency to increase significantly, depending 
on task scheduling. In this paper, we show that even if a 
SMP VM runs non-concurrent applications, the 
synchronization latency problem can still occur due to 
synchronization in the VM kernel.  

Our experiments show that both of the widely used open 
source hypervisors, Xen and KVM, with the default 
schedulers are susceptible to the synchronization latency 
problem. To remediate this problem, previous works 
propose a co-scheduling solution where virtual CPUs 
(vCPUs) of a SMP VM are scheduled simultaneously. 
However, the co-scheduling approach can cause CPU 
fragmentation that reduces CPU utilization, priority 
inversion that degrades I/O performance, and execution 
delay, leading to deployment impediment. We propose a 
balance scheduling algorithm which simply balances vCPU 
siblings on different physical CPUs without forcing the 
vCPUs to be scheduled simultaneously. Balance scheduling 
can achieve similar or (up to 8%) better application 
performance than co-scheduling without the co-scheduling 
drawbacks, thereby benefiting various SMP VMs. The 
evaluation is thoroughly conducted against both concurrent 
and non-concurrent applications with CPU-bound, I/O-
bound, and network-bound workloads in KVM. For 
empirical comparison, we also implement the co-
scheduling algorithm on top of KVM’s Completely Fair 
Scheduler (CFS). Compared to the synchronization-
unaware CFS, balance scheduling can significantly 
improve application performance in a SMP VM (e.g. 
reduce the average TPC-W response time by up to 85%).  

Categories and Subject Descriptors D.4.1 [Process 

Management]: Scheduling. 

General Terms  Algorithms, Experimentation, 
Performance. 

Keywords Virtualization, Synchronization. 

1. Introduction 

Virtualization provides a flexible computing platform for 
cloud computing (e.g. Amazon EC2) and server 
consolidation. It helps to maximize physical resource 
utilization and simplify system and infrastructure 
management. Virtualization mainly consists of a software 
layer between an operating system (OS) and hardware 
called a hypervisor, and a software version of a machine 
called a virtual machine (VM) or guest. Examples of 
hypervisors are VMware ESXi [VMware2010c], Xen 
[Barham2003] and KVM [KVM2008]. Like a real 
machine, a VM can run any application, OS or kernel 
without modifications. A VM can be configured with 
different hardware settings, such as the number of virtual 
CPUs (vCPUs) and the size of hard disk and memory. A 
VM with multiple vCPUs, which behave identically, is 
called a symmetric multiprocessing (SMP) VM. As a rule 
of thumb, a SMP VM should not have more vCPUs than 
available physical CPUs [VMware2010a], a practice 
followed in this paper. 

Virtualization can cause problems which do not exist in 
a non-virtualized environment. For instance, a spinlock 
(used for kernel synchronization) in a non-virtualized 
environment is assumed to be held for a short period of 
time and does not get preempted. But a spinlock held by a 
VM can be preempted due to vCPU preemption 
[Uhlig2004], vastly increasing synchronization latency and 
potentially blocking the progress of other vCPUs waiting to 
acquire the same lock. Combined with preemptible 
synchronization in a concurrent application inside a SMP 
VM, the synchronization latency problem in the VM can be 
severe, resulting in significant performance degradation. 

Deducing from the results of our experiments (Section 
5.3.1), the default schedulers of several current hypervisors 
(Xen and KVM) still seem to be unaware of the 
synchronization latency problem. To reduce 
synchronization latency, previous works propose a co-
scheduling solution where vCPUs of a SMP VM are 
scheduled simultaneously. Recently proposed systems 
[Weng2009, Bai2010] selectively apply co-scheduling only 
to SMP VMs running concurrent applications because a 
non-concurrent application has no application 
synchronization and thus may not significantly benefit from 



   

co-scheduling. In this paper, we show that a SMP VM 
running a non-concurrent application, such as a single-
threaded, synchronization-free and I/O-bound task, can also 
benefit from co-scheduling due to synchronization in the 
guest OS.  

Nonetheless, co-scheduling can still cause CPU 
fragmentation, priority inversion [Lee1997] and execution 
delay. These drawbacks can hinder deployment of various 
SMP VMs. For example, VMware’s co-scheduling solution 
[VMware2010b] tries to maintain synchronous progress of 
vCPU siblings by deferring the advanced vCPUs until the 
slower ones catch up. This can be too rigorous for a SMP 
VM running a minimal synchronization application, as 
shown in Section 5.3.1.  

We propose the balance scheduling algorithm which 
provides application performance similarly to or better than 
that of the traditional co-scheduling approach without the 
co-scheduling drawbacks. The concept of balance 
scheduling is simple – balancing vCPU siblings on 
different CPUs without precisely scheduling the vCPUs at 
the same time. This is easily accomplished by dynamically 
setting CPU affinity of vCPUs so that no two vCPU 
siblings are in the same CPU runqueue. We implement the 
balance scheduling algorithm on top of KVM’s scheduler 
(Completely Fair Scheduler – CFS [Molnar2007]) in the 
Linux kernel.  

For empirical comparisons, we also implement a co-
scheduling algorithm, called dynamic time-slice (DT) co-
scheduling, based on CFS to avoid the impact of different 
resource optimizations found in different hypervisors. DT 
co-scheduling should perform similarly to classic co-
scheduling, despite the differences in implementation. Our 
co-scheduling implementation is based on CFS with 
dynamic time slice, while the previous implementation 
relies on a scheduler with static time slice. Compared to the 
co-scheduling algorithm [Ousterhout1982], DT co-
scheduling has less computational complexity and does not 
incur CPU fragmentation. The expected synchronization 
latency of the DT co-scheduling algorithm is theoretically 
the lower-bound of the co-scheduling algorithm (details in 
Section 5.2.2).  

Because VMs can run many types of programs, we 
extensively evaluate the scheduling algorithms against both 
non-concurrent and concurrent applications with various 
degrees of synchronization. We also test them with 
different workloads (CPU-bound, I/O-bound and network-
bound). The empirical results show that balance scheduling 
can significantly improve application performance (e.g. 
reducing the average TPC-W response time by up to 85% 
compared to CFS). Balance scheduling also yield similar or 
better application performance (e.g. up to 8% higher X264 
throughput) than co-scheduling without the drawbacks of 
co-scheduling, thus benefiting many SMP VMs. 

We also evaluate balance scheduling against affinity-
based scheduling [Vaddagiri2009]. Both balance 
scheduling and affinity-based scheduling similarly 

manipulate each vCPUs’ CPU affinity. Unlike affinity-
based scheduling (static configuration), balance scheduling 
can potentially adapt to load changes. Balance scheduling 
dynamically sets CPU affinity before a scheduler assigns a 
runqueue to a vCPU, allowing the vCPU to run on the 
least-loaded CPU where there is no vCPU siblings. Load is 
measured as the number of runnable tasks in a per-CPU 
runqueue. 

This paper makes the following contributions:  

• We show that a SMP VM running a non-concurrent 
application can also suffer from the synchronization 
latency problem due to synchronization in the guest OS. 

• We propose the balance scheduling algorithm and 
present its performance analysis. We also compare the 
computational complexity of the balance scheduling 
and co-scheduling algorithms. 

• We implement the balance scheduling and co-
scheduling algorithms on top of CFS for empirical 
comparison. We theoretically and empirically show that 
our co-scheduling implementation is a refined variation 
of classic co-scheduling. 

• We perform a thorough evaluation on the balance 
scheduling, co-scheduling and affinity-based scheduling 
algorithms, in addition to CFS. 

The rest of this paper is organized as follows. Section 2 
elaborates on the synchronization latency problem. Section 
3 describes the co-scheduling approach. Section 4 presents 
our proposed balance scheduling algorithm. Section 5 
discusses the evaluation. Section 6 describes related work. 
Section 7 is the conclusion. 

2. Synchronization in SMP VMs 

2.1 Lock Primitive 

In a concurrent program, a lock primitive is used to provide 
synchronization among concurrent threads. Different OSes 
may support different types of locking. Typically there are 
two major types of lock primitives [Fischer2005].  

Semaphore/Mutex (non-busy-wait). The thread that is 
waiting for this lock can be blocked and go to sleep, 
allowing the scheduler to context switch to another 
runnable thread. This lock primitive is normally used in 
applications where synchronization may take long to 
complete (e.g. waiting to receive a network packet). 

Spinlock (busy-wait). A spinlock is used when 
synchronization is expected to take only a short amount of 
time. Thus, it is inefficient to perform context switching. 
The lock-waiter thread keeps spinning CPU cycles until it 
successfully acquires the lock. Spinlocks are simple and 
usually used in kernel. An OS kernel typically does not 
preempt a kernel thread which is holding a spinlock. With 
virtualization, a spinlock in a VM may be preempted due to 
vCPU preemption. 



   

2.2 Synchronization latency 

Synchronization latency is the amount of time it takes a 
thread to successfully acquire a lock. Synchronization 
latency in a SMP VM is simply the lock latency 
experienced by vCPUs of a VM. There are two causes of 
synchronization latency: task scheduling and preemption or 
blocking. The hypervisor scheduler can preempt vCPUs at 
any time, regardless of what they are executing.  

Synchronization latency depends on task scheduling 
when two or more vCPUs simultaneously want the same 
lock and this lock is blocked or preempted, as shown in 
Figure 1B. Otherwise, the latency is equal to or less than 
the amount of time it takes the lock-holder thread to finish 
synchronization and release the lock (TH) as shown in 
Figure 1A.  

 

Figure 1A. Synchronization latency without preemption. 

 

Figure 1B. Synchronization latency with preemption. 

Normally, a hypervisor scheduler, such as CFS or Xen’s 
Credit Scheduler [Yaron2007], allows vCPUs to be 
scheduled to run on any CPU. It is possible that the lock-
waiter thread can be scheduled before the lock-holder 
thread when a lock-holder thread is preempted, as shown in 
Figure 1B. We call this task scheduling situation vCPU 
stacking. In the worst case scenario, vCPU1 has to wait 
Tpreempt + Tperiod, as opposed to Tpreempt + TH. Tpreempt is 
measured from the time that vCPU0 is preempted until one 
of these vCPUs is re-scheduled, and TTS is a time slice of a 
vCPU, assuming all time slices are the same. Normally, TH 
is in the order of microseconds and Tperiod is in the order of 
milliseconds. The worst case latency may increase to 
several milliseconds. When waiting for a spinlock, many 
CPU cycles will also be wasted. 

3. Co-scheduling 

Ousterhout proposed a co-scheduling algorithm 
[Ousterhout1982] that schedules a set of concurrent threads 
simultaneously to reduce synchronization latency. Several 
previous works [VMware2008, Weng2009, Bai2010] apply 
co-scheduling to SMP VMs. As shown in Figure 2, co-

scheduling can significantly reduce synchronization latency 
(from Tpreempt + Tperiod to Tpreempt + TH'). Note that co-
scheduling cannot prevent preemption and eliminate 
Tpreempt, as shown in Figure 2.  

A simple way to co-schedule a set of tasks is finding a 
time slice that has a sufficient number of available physical 
CPUs to run all tasks, assuming every time slice has the 
same size. These tasks are delayed until such a time slice is 
found. This approach causes CPU fragmentation and 
priority inversion [Lee1997, VMware2008]. 

 
Figure 2. Synchronization latency with co-scheduling. 

3.1 CPU fragmentation 

As shown in Figure 3, with the co-scheduling approach, 
vCPU0 and vCPU1 cannot be scheduled until T1, although 
both become runnable at T0 because there is only one CPU 
idle at T0. This is called CPU fragmentation, which can 
reduce CPU utilization and also delay the vCPU execution.  

 

Figure 3. CPU fragmentation in co-scheduling. 

3.2 Priority Inversion 

Priority inversion is where a higher priority task is 
scheduled after a lower priority task. For example, an I/O-
bound job is given a priority to run whenever it is ready. 
However, it cannot run because all CPUs are allocated to 
the co-scheduled tasks. This problem can adversely affect 
interactive or I/O-bound jobs, and under-utilize other 
resources (e.g. disks). As seen in Figure 3, when an I/O-
bound job is ready between T0 and T1, the I/O job has to 
wait until T2 because the scheduler already assigns the slot 
T1 on both CPUs to vCPU0 and vCPU1, given that both 
vCPUs are runnable since T0. The longer the time slice of 
vCPU1 (T2-T1), the longer the disk sits idle and the higher 
the I/O latency, for example.  

4. Balance Scheduling 

4.1 Description 

To alleviate the synchronization latency problem, we 
propose the balance scheduling algorithm which balances 
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vCPU siblings on different physical CPUs without 
precisely scheduling the vCPUs simultaneously. It is 
simply achieved by dynamically setting CPU affinity of 
vCPUs so that no two vCPU siblings are in the same CPU’s 
runqueue. Unlike co-scheduling, it does not incur CPU 
fragmentation, priority inversion or execution delay. 

4.2 Severity of the vCPU-Stacking Problem 

Balance scheduling can be considered a probabilistic type 
of co-scheduling. It increases the chance of vCPU siblings 
being scheduled simultaneously by reducing the likelihood 
of the vCPU-stacking situation (described in Section 2.2). 
To estimate the probability of the vCPU-stacking 
occurrence, we empirically measure how often KVM’s 
CFS scheduler places vCPU siblings in the same CPU’s 
runqueue when running one or more CPU-intensive SMP 
VMs. We run three experiments: one, two and three four-
vCPU VMs with our CPU-bound workload (described in 
Section 5.1) in a four-CPU host. Each CPU runqueue is 
examined every 700 microseconds to see what tasks are in 
the queues by inspecting /proc/sched_debug. We then 
count the number of samples where the runqueue has two, 
three and four vCPU siblings in the same runqueue.  

As shown in Table 1, the risk of vCPU siblings being 
stacked grows as the number of VMs increases (the 
runqueue size also increases). When only one VM is 
running in the host, the chance that more than one vCPU 
sibling will be running sequentially is not significant 
(~6%). When the number of VMs increases to two, the 
chance substantially increases to 43.13%. Stacking vCPUs 
can undermine an illusion of synchronous progress of 
vCPUs, expected from the guest OS [VMware2010]. 
Without this illusion, the guest OS may malfunction or 
panic.   

# VMs 
# vCPUs in the same runqueue > 1 vCPU in 

the same 

runqueue 
2 3 4 

1 5.518% 0.045% 0.001% 5.564% 

2 31.903% 10.717% 0.507% 43.127% 

3 29.730% 12.091% 4.111% 45.932% 

Table 1. The probability of vCPU-stacking. 

4.3 Computational Complexity Analysis 

We compare the computational complexity of balance 
scheduling and co-scheduling. Assuming each time slice is 
the same, the pseudo code of the co-scheduling algorithm 
for scheduling k vCPUs of a SMP VM is described in 
Algorithm 1. According to the pseudo code, the 
computational complexity of the co-scheduling algorithm is 
O(NR) where N is the number of physical CPUs and R is 
the runqueue size.  

The pseudo code of the balance scheduling algorithm is 
shown in Algorithm 2. The computational complexity of 
balance scheduling is O(N) because the number of vCPUs 

is always less than or equal to the number of CPUs. By 
fixing N, the complexity of balance scheduling and co-
scheduling becomes O(1) and O(R) respectively. Therefore, 
balance scheduling has less computational complexity than 
co-scheduling.  

     Algorithm 1: Co-scheduling 

for each time slot i 
     available_cpus ← 0 
     for each CPU j 
         if time slot i on CPU j is idle 
             increment available_cpus by 1 
         end if 

         if available_cpus ≥ k 
             assign vCPUs to available CPUs  
             return 

         end if 

     end for each 

     end for each 

 

     Algorithm 2: Balance Scheduling 

  all_cpus ← set of all physical CPUs 
     if (task T has not been assigned a runqueue)  

    and (task T is a vCPU) 
       VMID ← Parent PID of task T 
       used_cpus ← {} 
       for each vCPU v of VMID 
            add CPU that v is on in used_cpus 
       end for each 

       CPUS of task T ← all_cpus – used_cpus 
end if 

4.4 Performance Analysis 

We theoretically show the synchronization latency 
improvement in balance scheduling compared to CFS, with 
the different numbers of available physical CPUs.  We also 
estimate the impact on application performance. 

As mentioned earlier, task scheduling can affect the lock 
latency when the lock is needed by two or more vCPUs and 
also preempted. We calculate the expected lock latency of 
balance scheduling and CFS using the equations in 
Appendix A. The following assumptions are made: each 
task in a runqueue has the same weight, each runqueue has 
the same size, the average lock holding time is one 
microsecond and two vCPUs need to acquire the same lock 
simultaneously. As shown in Figure 4A, the expected lock 
latency increases as the runqueue size grows. Intuitively, 
when the runqueue size is one (only one vCPU in the 
runqueue), balance scheduling and CFS are practically the 
same. The expected lock latency also lowers as the number 
of CPUs increases due to decrease in the vCPU-stacking 
probability. Balance scheduling can reduce the expected 
latency more than CFS as balance scheduling avoids vCPU 



   

stacking. As shown in Figure 4B, balance scheduling can 
significantly improve the expected lock latency compared 
to CFS (more than 14.4% for four CPUs), when the 
runqueue size is less than six. The experiments in Section 
5.3.6 show that the average runqueue size is practically 
about 4-6, even if a host has many threads. 

 
Figure 4A. The expected lock latency in balance 
scheduling and CFS. 

Figure 4B. The expected lock latency improvement in 
balance scheduling compared to CFS. 

Quantifying variation in application performance due to the 
change in synchronization latency is difficult. 
Conceptually, the impact of lock latency on application 
performance should be similar to a step function. As long 
as lock latency does not exceed a threshold leading to an 
operation timeout, a change in application performance 
should appear insignificant. Otherwise, the change can be 
substantial. For example, an application has to send five 
TCP packets. We assume the application takes 100 locks 
per second and the TCP average response time is 10 
milliseconds or greater. TCP transmission timeout is 200 
milliseconds by default in Linux. If the lock latency 

increases from one to two microseconds without any TCP 
retransmission, the response time of each packet will be 
increased by at most 20 microseconds, which is 0.2% or 
less increase in the average response times. But if the lock 
latency exceeds the threshold causing TCP timeout and a 
retransmission, then the average response time becomes 
50.004 milliseconds ((50 + 200 + 0.02)/5) or greater, which 
is a 400% increase in the average response time. Balance 
scheduling is designed to reduce the likelihood that the lock 
latency becomes exceedingly high. High lock latency 
usually occurs when a scheduler stacks vCPUs. As shown 
in Section 5.3.2, balance scheduling causes no TCP 
retransmission in TPC-W, but CFS does. 

5. Evaluation 

We extensively evaluate how balance scheduling, co-
scheduling, affinity-based scheduling and CFS (KVM’s 
default scheduler) improve application performance. The 
experiments are conducted with applications ranging from 
single-threaded and synchronization-free applications to 
concurrent applications with different degrees of 
synchronization. The applications also carry different types 
of workloads (CPU-bound, I/O-bound and network-bound) 
in various scenarios (combinations of SMP and non-SMP 
VMs run concurrently in the host).  

5.1 Experimental Setup 

All experiments run on a physical machine with Intel Core2 
Quad CPU Q8400 2.66GHz and 4 GB of RAM with 1Gbit 
Network card. The physical host runs Fedora Linux kernel 
2.6.33 with QEMU 0.11.0. The guest OSes are either 
Fedora 12 or 13. The selected applications are Pi, 
HackBench, X.264, Compile, TPC-W, Dell DVDstore, 
BZip2, Tar, TTCP, Ping, Bonnie++, our synthesized disk 
and CPU workloads, and our multiple-independent-process 
workload. Where relevant we use the fourth extended file 
system (ext4) [Mathur2007] in the experiments. 

Pi [Yee2010] is a multi-threaded and CPU-bound program 
entirely fitting in the memory. It calculates 100,000,000 
digits of pi using the Chudnovsky Formula. We use the 
computing time as a performance metric. 

HackBench [HackBench2008] is a multi-threaded program 
measuring Unix-socket (or pipe) performance. We run 
HackBench using four threads with 10,000 loops. The 
completion time (seconds) is used as a metric. 

X.264 [Phoronix2010] is a multi-threaded and CPU-bound 
application, which performs H.264/AVC video encoding. It 
reports the average throughput in frames per second. 

Compile is a compilation test on libvirt library using 
rpmbuild tool (a multi-process program). We measure the 
amount of time it takes to compile (in seconds).  

TPC-W [TPC2000] is a transactional web benchmark using 
multiple web interactions to simulate a retail store’s 
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activities. We use Apache HTTP server version 2.2.14 for 
the proxy server, Tomcat5 version 5.5.27 for the web server 
and MySQL version 5.1.44 for the database server. These 
servers are multi-threaded applications.  

Dell DVD Store (DVDstore) [Dell2007] is an open source 
simulation of an online ecommerce site. We use MySQL 
server 5.1.45 and Apache HTTP Server 2.2.15 for the 
database and web servers running in the same VM. 100 
clients with five-second thinking time concurrently connect 
from another physical machine located on the same network 
for three minutes. The average response time is used as a 
performance metric. 

BZip2 and Tar are single-thread data compressor programs. 
We use BZip2 to compress a 460 MB file and use Tar to 
decompress a 1.1GB file (Untar). We measure the time it 
takes to complete the task.  

TTCP [TTCP1996] is a single-thread socket-based 
application that measures TCP and UDP throughput (kB/s) 
between two systems. 

Ping is a single-thread and network-bound program that 
sends ping packets to another machine located on the same 
network.  

Bonnie++ [Coker2001] is an I/O benchmark measuring hard 
drive and file system performance. By default, it creates one 
thread for each test, except the seek test that uses three 
threads.   

Our disk-bound workload is a single-thread and disk-I/O-
bound program of our own creation that sequentially creates, 
writes and deletes small files on a local disk.  We measure 
the time it takes to finish the job.  

Our CPU-bound workload is a single-thread and CPU-
bound program primarily consuming only CPU resources 
with minimal memory footprint and I/O usage. It runs 
infinite loops with simple additions.  

Our multiple-independent-process workload consists of 
multiple processes that independently run a finite number of 
loops with simple arithmetic calculations.  

The host CPU utilization is collected using dstat 
[Wieërs2010]. The I/O statistics are gathered from 
/sys/block/vda/stat. We record the runqueue size of each 
physical CPU by sampling /proc/sched_debug every second. 
The sample average is the average runqueue size. We 
quantify application performance improvement by 
calculating a performance speed-up. The speed-up metric of 
a scheduling algorithm (SpeedUpSCHED) is computed using 
the following equation, where PerfSCHED is the application 
performance result achieved by the scheduling algorithm and 
PerfCFS is the application performance result achieved by 
CFS. 

������������ = �� !����� − �� !�#��� !�#�  

We create seven experiments for the evaluation. 
Experiment 1 shows the degree of the synchronization 
problem in several hypervisors (Xen, VMware and KVM). 
To eliminate a different resource optimization factor in 
different hypervisors, we use only KVM hypervisor for the 
rest of the experiments. Experiment 2 and 3 quantify 
synchronization latency improvement and efficiency of CPU 
resources by each scheduling algorithm respectively. 
Experiment 4 measures performance improvement in both 
concurrent and non-concurrent applications. Experiment 5 
assesses the scalability of the scheduling algorithms. 
Experiment 6 determines the scheduling performance and 
CPU runqueue sizes, when the machine hosts many VMs. 
Experiment 7 shows the performance of SMP and non-SMP 
VMs running in the same host.  

5.2 Implementation 

KVM is seamlessly integrated into the Linux kernel. It has a 
loadable kernel module providing the core of virtualization, 
and relies on existing Linux kernel modules for the rest of 
the functionalities (e.g. a scheduler). In KVM, a VM is a 
regular Linux process with vCPU processes, which require a 
modified QEMU for device emulation. 

We implement the balance scheduling and co-scheduling 
algorithms based on CFS. Unlike its predecessors, CFS 
dynamically calculates a time slice for each runnable task. 
The time slice is calculated as follows, where NT is the 
number of tasks in a runqueue, MinPeriod is the minimum 
period and MinSlice is the minimum time slice.   

      $%&'()*) = +,-./0,12+,-�3,4/  

          �� %5� = 6 $%&�� %5� if 89  ≤ $%&'()*)$%&�;%<� × 89 if 89 > $%&'()*) ?               
     '%@� �;%<� = ./0,12AB  

In version 2.6.33 of the Linux kernel, by default the 
minimum time slice is one millisecond, the minimum 
period is five milliseconds and all tasks in a runqueue have 
the same weight. The time slice calculation and scheduling 
decision are made independently on each runqueue (one per 
CPU). CFS implements a runqueue as a red-black tree 
[Cormen2001], sorted by each task’s vruntime (virtual 
runtime in nanoseconds). The scheduler always selects the 
task with the smallest vruntime to run next.  

5.2.1 Balance scheduling 

The balance scheduling algorithm can be easily 
implemented. We modify CFS to dynamically set the 
cpus_allowed field in each vCPU’s task_struct so that no 
two vCPU siblings are in the same runqueue. The 



   

cpus_allowed field indicates a set of CPUs that this task 
can run on. This cpus_allowed setting is done before a 
runqueue is chosen for a vCPU. 

5.2.2 Co-scheduling 

The classic co-scheduling algorithm (details in Section 4.3) 
is designed with a static-time-slice assumption. This design 
cannot be applied to CFS due to its dynamic time slice 
calculation. In CFS, the second tasks in the different 
runqueues may not be scheduled at the same time, for 
example. 

We create our version of co-scheduling, called dynamic 

time slice (DT) co-scheduling. To schedule vCPUs 
simultaneously, we first modify CFS so that it never inserts 
any two vCPU siblings in the same runqueue, like in 
balance scheduling. We then force the scheduler to 
schedule all runnable vCPU siblings simultaneously. 
However, this step only occurs when the scheduler 
normally selects the first vCPU sibling from a runqueue. 
As a result, we still preserve fairness among VMs without 
keeping track of vCPUs’ runtime.  To force the scheduler 
to context switch to the chosen vCPU, we call the 
resched_cpu function with the CPU ID. This function sets 
TIF_NEED_RESCHED flag on the current task and then 
sends an smp_send_reschedule inter-processor interrupt 
(IPI) to the targeted CPU. We modify the pick_next_entity 
function in sched_fair.c so that it can choose the targeted 
vCPU, instead of the lowest vruntime task. Unlike the 
previous co-scheduling approach, our DT co-scheduling 
algorithm does not incur CPU fragmentation and execution 
delay.  However, DT co-scheduling may shorten the time 
slice of the current task due to premature preemption and 
incur additional context switching. 

Our DT co-scheduling algorithm is a refined version of 
the previous co-scheduling algorithm. It has less 
computational complexity than the previous co-scheduling 
algorithm (O(N) versus O(NR)). Its expected 
synchronization latency is the lower-bound of the previous 
co-scheduling algorithm. The expected synchronization 
latency of DT co-scheduling is TH + TINT+CTX where TH is 
the lock-holding time and TINT+CTX is the amount of time it 
takes to send an IPI and perform context switching. Due to 
CPU fragmentation, the expected latency of the previous 

co-scheduling algorithm is '� + ∑ �,'9�E% − 1GH,IJ . TTS is a 
size of time slice. Pi is the probability of having sufficient 

CPUs to run all vCPU siblings at time slice i and ∑ �, =H,IJ1. TINT+CTX is normally in the order of microseconds and TTS 

is in the order of milliseconds. Therefore, ∑ �,'9�E% −H,IJ1G ≥  '9� > 'LA9M�9N. Moreover, the empirical results 
show that the DT co-scheduling algorithm can improve 
application performance by up to 6% compared to the 
previous co-scheduling algorithm.  Please see Appendix B 
for more details. Hence, our DT co-scheduling algorithm 
should be adequate for the comparative evaluation. 

5.2.3 Affinity-based scheduling 

We use the virsh vcpupin command to modify the CPU 
affinity of vCPUs. At the beginning of each experiment, we 
bind each vCPU to a CPU in such a way that the number of 
vCPUs per physical CPU is relatively the same and vCPU 
siblings cannot be assigned to the same physical CPU. 

5.3 Experimental Results 

5.3.1 Experiment 1 

Experiment 1 shows the degree of the synchronization 
problem in several current hypervisors. We run two CPU-
intensive workloads: HackBench (intensive 
synchronization) and the multiple-independent-process 
workload (no application synchronization) in a four-vCPU 
VM along with three one-vCPU VMs running our CPU-
bound workload.  
 

Figure 5. The average completion time with 95% 
confidence interval assuming the normal distribution.  

As shown in Figure 5, Xen (using the Credit scheduler) and 
KVM (CFS) have higher completion times than balance 
scheduling on HackBench due to their synchronization-
unaware schedulers. They treat all vCPU siblings as 
independent entities. Although VMware ESXi’s scheduler 
uses a co-scheduling algorithm to mitigate the 
synchronization problem, their algorithm can be too 
restrictive for certain applications that barely incur 
synchronization. As shown in Figure 5, VMware’s 
scheduler has the lowest completion time on HackBench 
(9.65% less than balance scheduling approach) because 
VMware’s scheduler maintains synchronous progress of 
vCPU siblings. However, this also causes VMware’s 
scheduler to complete the multiple-independent-process 
workload (14.88%) slower than the balance scheduling 
approach. VMware’s scheduler stops the advanced vCPUs 
until the slow vCPUs catch up [VMware2010b], resulting 
in vCPU-execution delay. Note that we confine the 
comparison to the CPU-only tests since different 
hypervisors may have different optimizations on other 
resources (e.g. network and disk I/O). 
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We also create a Windows version of HackBench to test 
on a VM with a different guest OS (i.e. Windows Server 
2008). The results are consistent with our findings from the 
Fedora guest OS. The Windows VM spends 20.23 and 
10.46 seconds using CFS/KVM and balance 
scheduling/KVM respectively, while the Fedora VM 
spends 20.58 and 9.02 seconds. These results suggest that 
the balance scheduling approach can benefit other guest 
OSes than Linux.  

5.3.2 Experiment 2 

The goal of this experiment is to show the improvement on 
the synchronization latency by different scheduling 
algorithms. We run TPC-W benchmark using three four-
vCPU VMs for the proxy, web and database servers. The 
maximum of 250 clients concurrently connect from another 
physical machine to the proxy server. The average and 90th 
percentile response times experienced by the clients are 
reported. We also use ftrace [Edge2009] to monitor the 
amount of time that the vCPUs of the proxy server take to 
execute the spin_lock function, and use SystemTap 
[RedHat2010] to monitor TCP retransmissions in the VMs. 

Figure 6A. The spinlock latency CDF of the proxy server.  

Figure 6B. The response time statistics of TPC-W.  

As shown in Figure 6A, balance scheduling, affinity-
based scheduling and co-scheduling can similarly improve 
the average spinlock latency compared to CFS (decreased 
by 29.78%, 31.67% and 29.60% respectively). The 
significant increase in the spinlock latency caused by CFS 
can trigger a TCP timeout leading to TCP retransmissions. 
The retransmissions in the proxy server can cause 
disruptions in the subsequent servers (the web and database 
servers) and eventually affect the overall response time. 
From the experiment, we find 1,363 retransmissions 
between the proxy and web servers, 399 retransmissions 
from the web to database servers, and 38 TCP 
retransmissions between the clients and the proxy server 
with CFS, while there is no retransmission with the other 
scheduling algorithms. These retransmissions severely 
degrade the TPC-W performance. In balance scheduling, 
affinity-based scheduling and co-scheduling, the average 
response time is reduced by 85.04%, 83.53% and 84.62% 
respectively, as shown in Figure 6B. These results show 
that balance scheduling can significantly improve the 
synchronization latency and application performance, 
compared to CFS. Balance scheduling also performs 
similarly to co-scheduling (achieving about the same 
average and 90th percentile response times). 

5.3.3 Experiment 3 

The synchronization latency problem not only degrades 
application performance, but also wastes CPU resources 
due to unnecessary CPU spinning. This experiment shows 
the improvement in processing efficiency by the different 
scheduling algorithms. We run the Bonnie++ benchmark in 
a four-vCPU VM along with a two-vCPU VM running the 
CPU-bound workload. The two-vCPU VM is used to 
simulate a background workload. For each I/O test, 
Bonnie++ reports I/O throughput and CPU utilization in the 
VM. We use these metrics to calculate throughput per CPU 
utilization, which is then used to compute the speed-up. 
This speed-up metric indicates the I/O processing 
efficiency.  

Even though Bonnie++ spawns only a single thread for 
each test (except the seek test), it can encounter the 
synchronization problem due to intensive disk I/O 
processing in the guest OS. Balance scheduling, affinity-
based scheduling and co-scheduling can help reduce 
excessive CPU cycles caused by synchronization-unaware 
scheduling, thereby having more CPU cycles for useful 
work. As shown in Figure 7, balance scheduling, affinity-
based scheduling and co-scheduling significantly increases 
the I/O processing efficiency by up to 40%, 45% and 53% 
for the read operation (SeqInput); 70%, 73% and 63% for 
the write operation (SeqOutput) and 374%, 439% and 
382% for the seek operation respectively. The I/O latency 
is also improved. As shown in Figure 8, balance 
scheduling, affinity-based scheduling and co-scheduling 
reduce the I/O read latency by 48%, 23% and 35%, 
compared to CFS. The I/O write latency is not improved as 
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much as the read latency due to the disk being a bottleneck. 
The gain by each scheduling algorithm, excluding CFS, can 
be varied at each trial depending on cache performance. 

Figure 7. The speed up of I/O throughput per CPU 
utilization of Bonnie++benchmark. 

Figure 8. The I/O statistics in the Bonnie VM. 

5.3.4 Experiment 4 

This experiment shows how much each scheduling algorithm 
can improve the performance of applications ranging from 
single-threaded programs without any locking, to multi-
threaded programs with different degrees of application 
synchronization. We also test the algorithms with different 
types of workloads (CPU-bound, I/O-bound and network-
bound). We run two SMP VMs in the host: one four-vCPU 
VM running an application, except for TTCP, and one two-
vCPU VM running our CPU workload. This two-vCPU VM 
is for simulating a background workload. For TTCP, we run 
two four-vCPU VMs in the host: one for a TTCP transmitter 
and the other for a TTCP receiver. 

For the multi-threaded applications (Pi, HackBench, 
X.264, Compile, and DVDstore), affinity-based scheduling, 
balance scheduling and co-scheduling similarly improve 
the application performance by up to 85% compared to 
CFS, as shown in Figure 9. The improvement varies due to 
the degree of synchronization in the SMP VM. HackBench 
incurs intensive synchronization due to socket sharing in 
the guest VM kernel, as opposed to Pi, which incurs a 
relatively small degree of application synchronization.  

Figure 9. The performance improvement of different 
applications using affinity-based, balance and co-scheduling. 

Modern kernels are capable of servicing multiple 
applications simultaneously. To understand the impact of 
kernel synchronization on application performance, we run 
two independent (synchronization-free) processes of the 
disk workload in the four-vCPU VM. As shown in Figure 
10, balance scheduling, affinity-based scheduling, and co-
scheduling reduce the completion time by 35%, 32%, and 
31% compared to CFS, respectively, due to file system 
synchronization. The improvement in file system 
performance increases I/O aggregation as indicated by the 
20% reduction in the average I/O write requests. These 
results suggest that synchronization can incur in a VM 
despite running synchronization-free applications. Balance 
scheduling reduces the completion time by 5% compared to 
co-scheduling due to additional context switching. 

 
Figure 10. Performance of multiple disk-I/O processes in a 
SMP VM. 

We also run a single-threaded application (no application 
synchronization) in the VM to understand the effect of 
synchronization in the guest VM kernel. As shown in 
Figure 9, balance scheduling, affinity-based scheduling and 
co-scheduling improve TTCP performance by 26%, 27% 
and 18%, Untar performance by 16%, 11% and 20%, and 
BZip2 performance by 6%, 4% and 5% compared to CFS 
respectively. The improvement depends on the degree of 

-50 0 50 100 150 200 250 300 350 400 450

SeqOutput PerChr

SeqOutput Block

SeqOutput Rewrite

SeqInput PerChr

SeqInput Block

Random Seeks

SeqCreate Create

SeqCreate Read

SeqCreate Delete

RandomCreate Create

RandomCreate Read

RandomCreate Delete

Throughput Per CPU Speed Up (%) Compared to CFS

 

 

CPU Affinity

Balance

Coschedule

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10

read I/O(requests)

read merges(requests)

read sectors(sectors)

read ticks(ms)

write I/O(requests)

write merges(requests)

write sectors(sectors)

write ticks(ms)

io_ticks(ms)

time_in_queue(ms)

I/O Speed Up (%) Compared to CFS

 

 
CPU Affinity

Balance

Coschedule

Pi HackBench X264 Compile DVDStore BZip2 Untar TTCP
0

10

20

30

40

50

60

70

80

90

S
p
e
e
d
 U

p
 (

%
) 

C
o
m

p
a
re

d
 T

o
 C

F
S

 

 

CPU Affinity

Balance

Coschedule

Single-threaded ApplicationsMulti-threaded Applications

Default (CFS) CPU Affinity Balance Coschedule
0

50

100

150

200

250

C
o
m

p
le

ti
o
n
 T

im
e
 (

s
e
c
o
n
d
s
)

 

 

Process1

Process2

A
v
e
ra

g
e
 W

ri
te

 I
/O

 R
e
q
u
e
s
ts

0.85

0.9

0.95

1

1.05

1.1

1.15
x 10

4



   

synchronization in the VM kernel. TTCP mainly relies on 
the guest kernel for network processing, while Untar 
processes in both user and kernel spaces (for I/O 
processing) and BZip2 mainly runs in the user space with 
minimal kernel assistance. For TTCP, balance scheduling 
has 6% higher TTCP throughput than co-scheduling due to 
additional context-switching. For Untar and BZip2, the 
completion times vary over 20 trials because the 
improvement due to their small degree of kernel 
synchronization can be outweighed by cache performance.  

Overall, the results show that balance scheduling, 
affinity-based scheduling and co-scheduling can benefit 
any application that incurs synchronization in either 
application or kernel inside a SMP VM. The performance 
improvement depends on the degree of synchronization in 
the VM. Balance scheduling can improve application 
performance up to 6% more than co-scheduling due to 
additional context-switching. 

Figure 11A. The aggregated throughput of all X.264 VMs 
with 95% confidence interval. 

Figure 11B. The CPU utilization on the host with 95% 
confidence interval. 

5.3.5 Experiment 5 

This experiment assesses the scalability of each scheduling 
algorithm as the number of VMs increases. We keep adding 
more four-vCPU VMs running X.264 until reaching the 

host’s maximum CPU capacity. We use the aggregated 
throughput of all VMs as a performance metric.  

As shown in Figure 11A and B, balance scheduling, 
affinity-based scheduling and co-scheduling scale better 
than CFS due to the synchronization latency problem. Their 
X.264 throughputs increase as the number of VMs and the 
CPU utilization increases, when the host runs between one 
to three VMs. The host reaches its maximum capacity, 
when running 3-4 VMs. As shown in Figure 11A, affinity-
based scheduling achieves 3% higher X264 throughput 
than balance scheduling due to better cache performance. 
When the host has five VMs, the thrashing effect starts to 
take place. Performance of all scheduling algorithms 
decreases, while the CPU utilization does not. As seen in 
Figure 11A and B, balance scheduling yields up to 4% 
higher in the X264 throughput than co-scheduling with 
about the same amount of CPU resources due to additional 
context switching. 

5.3.6 Experiment 6  

As discussed in Section 4.4, the performance of balance 
scheduling theoretically declines as the runqueue size 
grows. In this section, we show that in practice the average 
runqueue (per CPU) does not exceed six even if the four-
CPU host has more than 24 threads. We run 14 four-vCPU 
VMs in the host: one X.264 VM and the rest (13 VMs) 
running the CPU workload with a CPULimit program 
[Marletta2010]. CPULimit is used to control CPU usage in 
the VMs. The maximum CPU usage of the 13 VMs is 8%, 
bounded by the maximum CPU capacity in the host. 14 
VMs is the maximum number of VMs we can run 
concurrently due to the memory capacity. We measure the 
X.264 throughput and the runqueue size of each host CPUs.  

Figure 12. The average and maximum runqueue size of 
four physical CPUs by each scheduling approach. 

In this experiment, there are 56 vCPU threads, in addition 
to other threads (e.g. QEMU and system threads), alive in 
the host. One may expect to have at least 14 tasks per 
runqueue. In fact, a runqueue contains only runnable 
threads, not threads that are blocked or sleeping. As shown 
in Figure 12, as the CPU usage in the 13 VMs increases, 
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the average runqueue size of each CPU increases but still 
remains less than six, although the maximum runqueue at a 
certain moment can go up to 26. Due to the limited number 
of runnable threads in the runqueue, balance scheduling 
still performs very well even if the host has many VMs 
running. As shown in Figure 13, balance scheduling 
improves the X.264 throughput by up to 82.69%, 3.8%, and 
4.2%, compared to CFS, affinity-based scheduling and co-
scheduling respectively.  

Figure 13. The X.264 performance and the host CPU 
utilization. 

5.3.7 Experiment 7 

This experiment shows how the scheduling algorithms 
affect performance of both SMP and non-SMP VMs 
running in the same host. We run X.264 in four-vCPU 
VMs and Ping in a one-vCPU VM. Ping sends an ICMP 
packet to another machine every one millisecond for 
300,000 times. It goes to sleep after a packet is sent. We 
record the X.264 throughput and the standard deviation of 
Ping response times (jitter). High jitter can cause an 
undesirable effect, for example unusable video rendering. 

As shown in Figure 14, balance scheduling has better 
Ping jitter (up to 41%) and more aggregated X.264 
throughput (up to 8%) than affinity-based scheduling due to 
global load balancing. In balance scheduling, the Ping 
vCPU should always run in the least-loaded CPU, but it is 
not always the case in affinity-based scheduling. By 
default, the load balancer is triggered every 60 
milliseconds. It is possible that a CPU has more load than 
the others for a certain period of time. By design, balance 
scheduling allows a vCPU to move to the least-loaded CPU 
every time it wakes up, given that the CPU does not have 
its siblings. In the affinity-based scheduling, the vCPU has 
to run on the same CPU. Hence, balance scheduling can 
better adapt to load changes than affinity-based scheduling. 
The benefit of load adaptation decreases as the number of 
the available CPUs for vCPU siblings decreases. 

Balance scheduling has better the X.264 throughput (up 
to 8%) and Ping jitter (up to 2.5%) than co-scheduling due 
to priority inversion and additional context switching. 

Balance scheduling yields (up to 12%) higher aggregated 
X.264 throughput than CFS due to the synchronization 
latency problem. It also has similar or (up to 27%) higher 
Ping jitter than CFS. These results suggest that balance 
scheduling can effectively schedule both SMP and non-
SMP VMs without suffering from priority inversion and 
global load balancing.   

Figure 14. The X.264 performance in SMP VMs and Ping 
jitter performance in non-SMP VMs. 

5.3.8 Discussion 

Application performance degradation in a SMP VM 
depends on the degree of synchronization in both 
applications and OS inside the VM. As shown in 
Experiment 3 and 4, a SMP VM running synchronization-
free applications (no application locks) can also suffer from 
the synchronization latency problem because the guest OS 
is capable of concurrent processing.  

For example, the file system in guest OS can process 
multiple read/write requests simultaneously to reduce the 
latency perceived by users. Synchronization is required to 
provide concurrent modifications on the file system 
structure. In Experiment 4, we simultaneously run two 
independent disk-I/O processes which continuously create, 
read and write a number of files in the same directory. In 
the file system, a file or directory is represented by an inode 
which can be identified by a unique number within a file 
system. An inode contains file information, such as 
physical locations of file data, permission, and file size. An 
inode for a directory also has a list of inodes, identifying 
files in the directory. When two processes concurrently 
create new files in the same directory, they need to be 
synchronized in order to access and update the directory 
inode.  

Similar to the file system, the network processing in 
guest OS also requires synchronization. For instance, when 
the networking layer and a device driver access a buffer 
simultaneously, a lock must be held prior to the access. A 
buffer (a block of memory) is used to store network 
packets. In Experiment 4, we run a single-thread network 
application, TTCP, in the SMP VM. TTCP continuously 
sends a number of TCP packets to another VM, which will 
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send TCP ACK packets back upon receiving TCP packets. 
For the packet transmission, the networking layer creates 
packets and places them in the buffer. The device driver 
removes packets from the same buffer and sends to the 
network. The networking layer and the device driver 
require synchronization to access the shared buffers. 
Hence, even if a SMP VM runs a synchronization-free and 
network-bound application, the synchronization is still 
required in the guest OS.  

Due to task scheduling, synchronization latency in a 
SMP VM can significantly increase, adversely affecting 
application performance. By design, the co-scheduling 
algorithm should work exceptionally well with 
synchronization-intensive applications because it 
synchronizes the execution of vCPU siblings, as shown in 
Figure 2. It would be futile to schedule the vCPU siblings 
in different time slots, if they often contend on the same 
lock. However, if the synchronization is barely required in 
a SMP VM, forcing vCPU siblings to be scheduled 
simultaneously can result in vCPU-execution delay, leading 
to application performance degradation. As shown in 
Figure 3, if the vCPUs mostly execute independent jobs, 
each vCPU should be able to run as soon as a CPU 
becomes available without unnecessary delay. 

Unlike co-scheduling, balance scheduling does not force 
vCPU siblings to be scheduled simultaneously. It just 
balances vCPU siblings on different physical CPUs to 
increase a chance of the vCPUs being scheduled 
simultaneously. Balance scheduling never delays vCPU 
execution. Hence, minimal synchronization applications 
should benefit from balance scheduling more than co-
scheduling. As shown in Experiment 1, balance scheduling 
has the shortest completion time (13% better than co-
scheduling) on the multiple-independent-process workload 
(no application synchronization). But VMware’s co-
scheduling solution has the smallest completion time (10% 
better than balance scheduling) on HackBench 
(synchronization-intensive application). Theoretically, 
balance scheduling should be preferable to co-scheduling 
as the degree of synchronization in a SMP VM decreases. 
We also evaluate co-scheduling and balance-scheduling 
against other concurrent applications with different degree 
of synchronization (TPC-W, DVDstore, Compile and 
X264). As shown in Experiment 2 and 4, balance 
scheduling can improve application performance similarly 
to DT co-scheduling with a possible few percentage gain 
(e.g. reduce the average response times of TPC-W and 
DVDstore by up to 3%). Overall, balance scheduling 
exhibits a promising capability in alleviating the 
synchronization latency problem without the co-scheduling 
drawbacks. 

Balance scheduling can also significantly improve 
application performance, compared to synchronization-
unaware schedulers, such as Xen and CFS. As shown in 
Experiment 1, balance scheduling can complete 
HackBench and the multiple-independent-process workload 

6% and 56% quicker than Xen/Credit scheduler does, 
respectively. Balance scheduling can reduce the average 
TPC-W response time by 85% compared to CFS. It also 
improves the I/O processing efficiency by up to 40% and 
70% for the disk-I/O read and write operations, compared 
to CFS. Additionally, balance scheduling can effectively 
schedule more SMP VMs than CFS. As shown in 
Experiment 5, balance scheduling increases the aggregated 
X264 throughput as the number of VMs increases (up to 
four VMs). With CFS, the X264 throughput increases, 
when the number of VMs increases up to three VMs. Then, 
the X264 throughput starts to drop. The X264 throughputs 
by CFS are also consistently less than the throughputs by 
balance scheduling (up to 15%). The reason is that CFS 
wastes more CPU cycles due to the synchronization latency 
problem. 

Moreover, balance scheduling can potentially adapt to 
load changes, unlike affinity-based scheduling (static 
configuration).  As shown in Experiment 7, balance 
scheduling can improve Ping jitter up to 41%, compared to 
affinity-based scheduling. 

6. Related Work 

In the past, without virtualization, Ousterhout 
[Ousterhout1982] proposed a co-scheduling algorithm 
which schedules concurrent threads simultaneously to 
reduce application synchronization latency. Lee et al. 
[Lee1997] show that the co-scheduling algorithm can cause 
CPU fragmentation, which reduces CPU utilization, and 
priority inversion, which reduces I/O performance and 
other resource utilization. Later works [Feitelson1992, 
Wiseman2003] try to improve on the co-scheduling 
algorithm. 

With virtualization, the synchronization latency problem 
becomes severe; spinlocks in a guest OS can get 
preempted. This never happens in a non-virtualized 
environment. Uhlig et al. [Uhlig2004] identify this problem 
as lock-holder preemption (LHP) in SMP VMs. They 
propose several techniques to prevent LHP. The techniques 
require augmenting guest OS or installing a special-crafted 
device driver, and thus may not be feasible in commodity 
OSes (e.g. Windows). Balance scheduling does not prevent 
LHP, but alleviates effect of LHP. Even if spinlocks in a 
SMP VM are no longer preempted, application locks can 
still benefit from balance scheduling.  

To mitigate the synchronization latency problem in SMP 
VMs, previous works [VMware2008, Weng2009, Bai2010] 
propose a co-scheduling solution where vCPU siblings are 
scheduled simultaneously. Unlike co-scheduling, balance 
scheduling only balances vCPU siblings on different 
physical CPUs without forcing the vCPUs to be scheduled 
at the same time. Balance scheduling can be easily 
implemented and significantly improve application 
performance without the complexity and drawbacks found 
in co-scheduling (CPU fragmentation, priority inversion 
and execution delay). 



   

VMware developed several versions of co-scheduling 
for VMware ESXi. The first version, called strict co-

scheduling, is included in VMware ESX 2.x 
[VMware2008]. Due to CPU fragmentation, VMware 
created relaxed co-scheduling (ESX 3.x) where all vCPU 
siblings are stopped and only the lagging vCPUs are started 
simultaneously when they are out of synchronization. The 
relaxed co-scheduling is further refined in ESX 4.x 
[VMware2010b] – stopping only advanced vCPUs, instead 
of all vCPUs. Balance scheduling is similar to the relaxed 
co-scheduling in a sense that the scheduling operation is 
per vCPU. But balance scheduling never delays execution 
of a vCPU to wait for another vCPU in order to maintain 
synchronous progress of vCPU siblings. Balance 
scheduling is also simpler. No discrepancy accruing in 
progress of vCPU siblings is required. To avoid the co-
scheduling drawbacks, Weng et al. [Weng2009] limit co-
scheduling to a SMP VM with a concurrent application, 
unlike balance scheduling which does not share any co-
scheduling drawbacks, thereby benefiting both concurrent 
and non-concurrent SMP VMs. 

Jiang et al. [Jiang2009] propose several techniques to 
improve KVM performance, such as temporarily increasing 
the priority of vCPUs and approximately co-scheduling 
vCPU siblings by changing their scheduling class from 
SCHED_OTHER (default scheduling class in CFS) to 
SCHED_RR (real-time scheduling class). Changing the 
priority of vCPUs can affect the fairness and performance 
of other VMs; unlike balance scheduling which never 
changes scheduling class or priority of vCPUs.  

AMD [Langsdorf2010] and Intel [Intel2010] also 
provide architectural support for heuristically detecting 
contended spinlocks so that the hypervisor can de-schedule 
them to reduce excessive CPU cycle use.  They add 
additional fields in the VM data structure (Pause-Filter-
Count in AMD and PLE_Gap and PLE_Window in Intel). 
For example, in Intel, PLE_Gap is an upper bound on the 
amount of time between two successive executions of 
PAUSE in a loop. PLE_Window is an upper bound on a 
guest allowed for a PAUSE loop. According to KVM’s 
codes, PLE_Gap is set to 41 and PLE_Window is 4096. It 
means that this approach can detect a spinning loop that 
lasts around 55 microseconds on a 3GHz CPU. As 
mentioned earlier, the synchronization problem incurs not 
only by synchronization in applications inside a VM, but 
also synchronization in the guest kernel.  As shown in 
Figure 6A, most spinlocks in VMs last less than 50 
microseconds. Hence, this support should help cease 
application locks rather than spinlocks in kernel. However, 
the values of PLE_Gap and PLE_Window should not be 
too small due to the cost of VM_EXIT, (4-5K cycles 
[Zhang2008], depending on CPU architectures). VM_EXIT 
can also cause performance loss due to transition cost (VM 
exit, VM reads, VM writes, VM entry, and TLB flushing 
cost).  

7. Conclusion 

Despite the benefit of parallel processing, SMP VMs can 
also increase synchronization latency significantly, 
depending on task scheduling. In this paper, we show that a 
SMP VM running non-concurrent applications can also 
need synchronization for concurrent processing in the guest 
OS.  

To mitigate the synchronization problem, previous 
works have proposed a co-scheduling solution, which 
rigorously maintains synchronous scheduling of vCPU 
siblings. This approach can be too expensive for SMP VMs 
with minimal synchronization due to delay in vCPU 
execution. We propose the balance scheduling algorithm, 
which simply balances vCPU siblings on different physical 
CPUs without strictly scheduling the vCPUs 
simultaneously. Balance scheduling can improve 
performance of concurrent SMP VMs similarly to co-
scheduling without the co-scheduling drawbacks (CPU 
fragmentation, priority inversion and execution delay). 
Unlike co-scheduling, balance scheduling can also 
effectively schedule SMP VMs with minimal 
synchronization; thereby benefiting many SMP VMs. In 
practice, most applications, including concurrent 
applications, should not demand intensive synchronization. 
Minimal synchronization usage is encouraged in concurrent 
applications to promote parallelism. Synchronization serves 
as the bottleneck in parallel execution. Yet, it is still 
necessary in many concurrent applications. Additionally, a 
number of existing and legacy applications are still non-
concurrent.  
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Appendix  

A. Expected lock latency calculation 

We use Eq. 1 and 2 to calculate the expected lock latency 
of CFS and balance scheduling respectively. TH is the 
average lock holding time. |RQ| is a runqueue size. |VW| is 
the number of vCPUs that want to acquire the same lock, 
and |CPU| is the number of available physical CPUs.  
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B. Analysis of our DT scheduling 

The computation complexity of DT co-scheduling is O(N) 
where N is the number of CPUs, according to the pseudo 
code in Algorithm 3.  

   Algorithm 3: DT Co-scheduling 

    all_cpus ← set of all physical CPUs 
    if task T is a vCPU 

     if task T is not assigned a runqueue 
      VMID ← Parent PID of task T 
       used_cpus ← {} 
      for each vCPU v of VMID 
                   add CPU that v is on in used_cpus 
            end for each 

      CPUs of task T ← all_cpus – used_cpus 
     else if task T is the first vCPU of the VM  to be 
                scheduled 
          for each vCPU sibling v of task T 
                if v is not currently scheduled 
          send reschedule interrupt  
                    context switch to v  
                         end if 

                   end for each 

     end if 

end if    

We also run three multi-threaded applications (Pi, 
HackBench and DVDstore) to compare the performance of 
our DT co-scheduling and the co-scheduling in 
[Ousterhout1982]. We mimic the co-scheduling on KVM 
by changing vCPUs’ scheduling class from 
SCHED_OTHER (CFS) to SCHED_RR (RT scheduling) 
with the priority of 20. RT tasks have higher priority than 
CFS tasks. By default, the RT period is 1 second and the 
RT runtime is 950 milliseconds. This reserved RT runtime 
is given to RT tasks first and the rest is allocated to CFS 
tasks. We experiment with four combinations of RT 
runtime and period: 15ms/30ms, 28ms/30ms, 
500ms/1000ms and 950ms/1000ms (default). As shown in 
Figure 15, our DT co-scheduling improves DVDStore (I/O 
and network-intensive) performance at least 6% better than 

the co-scheduling. DT co-scheduling improves HackBench 
and Pi performance at least 0.7% and 0.3% better than the 
co-scheduling respectively. These results show that our DT 
co-scheduling can perform similarly or better than the co-
scheduling without tuning the time slice and period 
parameters.   

Figure 15. The comparison of application performance 
between the SCHED_RR-based co-scheduling and our 
DT co-scheduling.  

References  

[Bai2010] Y. Bai, C. Xu, and Z. Li. “Task-aware based co-scheduling for 
virtual machine system”, In Proceedings of the 2010 ACM 
Symposium on Applied Computing. SAC '10. ACM, New York, NY, 
181-188. 

[Barham2003] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. 
Ho, R. Neugebauer, I. Pratt, and A. Warfield. 2003. Xen and the art 
of virtualization. In Proceedings of the nineteenth ACM symposium 
on Operating systems principles (SOSP '03). ACM, New York, NY, 
USA, 164-177. 

[Coker2001] R. Coker. Bonnie++ version 1.03.  
http://www.coker.com.au/Bonnie++/, 2001. 

[Cormen2001] T. H. Cormen,, C. E. Leiserson, and R. L. Rivest. 
Introduction to Algorithms, Second Edition. MIT Press and 
McGraw-Hill, 2001. Chapter 13: Red-Black Trees, pp. 273–301.  

[Dell2007] Dell, Inc. The DVD Store Version 2. http://www. dell 
techcenter.com/page/DVD+Store, December, 2007. 

[Edge2009] J. Edge. A look at ftrace. http://lwn.net/Articles/ 322666/, 
March, 2009. (accessed August 2010). 

[Feitelson1992] D. Feitelson, L. Rudolph. Gang scheduling performance 
benefits for fine-grain synchronization. Journal of Parallel and 
Distributed Computing, 1992.  

[Fischer2005] G. Fischer, C. Rodriguez, C. Salzberg, S. Smolski. Linux 
Scheduling and Kernel Synchronization. Nov 11, 2005. Prentice Hall 
Professional. 

[HackBench2008] HackBench, http://people.redhat.com/mingo/cfs-
scheduler/tools/hackbench.c, September 2008. 

[Intel2010] Intel. Intel 64 and IA-32 Architectures Software Developer's 
Manual. Volume 3B: System Programming Guide, Part 2, June 2010. 

[Jiang2009] W. Jiang, Y. Zhou,, Y. Cui, W. Feng, Y. Chen, Y. Shi, and Q. 
Wu. CFS Optimizations to KVM Threads on Multi-Core 
Environment. In Proceedings of the 2009 15th international 
Conference on Parallel and Distributed Systems. ICPADS2009. 

[KVM2008] Qumranet. KVM. Kernel Based Virtual Machine. 
http://www.linux-kvm.org/, September, 2008.  

15ms/30ms 28ms/30ms 950ms/1000ms 500ms/1000ms Dynamic
0

20

40

60

80

100

120

140

160

180

C
o
m

p
le

ti
o
n
 T

im
e
/R

e
s
p
o
n
s
e
 T

im
e
 (

S
e
c
o
n
d
s
)

 

 

Pi

HackBench

DVDstore

SCHED_RR (Runtime/Period)



   

[Langsdorf2010] M. Langsdorf. Patchwork: Support Pause Filter in AMD 
processors. https://patchwork.kernel.org/ patch/48624/  (accessed 
May 2010). 

[Lee1997] W. Lee, M. Frank, V. Lee, K. Mackenzie and L. Rudolph, 
Implications of I/O for Gang Scheduled Workloads, Job Scheduling 
Strategies for Parallel Processing, pp. 215-237, 1997. 

[Marletta2010] A. Marletta. CPU Usage Limiter for Linux. 
http://cpulimit.sourceforge.net/ (accessed August 2010). 

[Mathur2007] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, 
L. Vivier. The new ext4 filesystem: current status and future plans. 
Proceedings of the Linux Symposium. Ottawa, ON, CA: Red Hat. 
2007. 

[Molnar2007] I. Molnar. CFS design. http://people.redhat.co m/mingo/cfs-
scheduler/sched-design-CFS.txt, May 2007.   

[Ousterhout1982] J. Ousterhout, "Scheduling Techniques for Concurrent 
Systems,"Proc. 3rd International Conference on Distributed 
Computing Systems, October 1982. 

[Phoronix2010] Phoronix Test Suite. X.264 Benchmark. http: 
//www.phoronix-test-suite.com/index.php?k=downloads (accessed 
September 2010) 

[RedHat2010] Red Hat, IBM, Hitachi, and Oracle. SystemTap. 
http://sourceware.org/systemtap/  

[TPC2000] TPC. Transaction Processing Performance Council. TPC-W: 
A transactional web e-Commerce benchmark. 
http://www.tpc.org/tpcw/, January 2000.  

[TTCP1996] TTCP Utility. Test TCP (TTCP) Benchmarking Tool and 
Simple Network Traffic Generator. http://www 
.pcausa.com/Utilities/pcattcp.htm, 1996. 

[Uhlig2004] V. Uhlig, J. LeVasseur, E. Skoglund, and U. Dannowski. 
“Towards scalable multiprocessor virtual machines”, In Proceedings 
of the 3rd Conference on Virtual Machine Research and Technology 
Symposium - Volume 3, 2004. USENIX Association, Berkeley, CA.  

[Vaddagiri2009] S. Vaddagiri, B.B. Rao, V. Srinivasan, A.P. Janakiraman, 
B. Singh, and V.K. Sukthankar. Scaling software on multi-core 
through co-scheduling of related tasks. In Linux Symp., pages 287–
295, 2009. 

[VMware2008] Drummonds. VMware, Inc. Co-scheduling SMP VMs in 
VMware ESX server. May 2, 2008. 
http://communities.vmware.com/docs/DOC-4960.  

[VMware2010] VMware, Inc. VMware vSphere 4: The CPU Scheduler in 
VMware ESX 4 White Paper. 
http://www.vmware.com/files/pdf/perf-vsphere-cpu_scheduler.pdf  
(accessed September 2010). 

[VMware2010a] VMware, Inc. Performance best practices for VMware 
vSphere 4.0. VMware ESX 4.0 and ESXi 4.0. 
http://www.vmware.com/pdf/Perf_Best_Practices_vSphere4.0.pdf  
(accessed September 2010) 

[VMware2010b] VMware, Inc. VMware  vSphere 4: The CPU scheduler 
in VMware ESX 4.1, September 2010. 
http://www.vmware.com/files/pdf/techpaper/VMW_vSphere41_cpu_
schedule_ESX.pdf (accessed September 2010). 

[VMware2010c] VMware, Inc. VMware vSphere Hypervisor (ESXi). 
http://www.vmware.com/products/vsphere-hypervisor/index.html. 
(accessed September 2010).  

[Weng2009] C. Weng, Z. Wang, M. Li, and X. Lu. “The hybrid 
scheduling framework for virtual machine systems”, In Proceedings 
of the 2009 ACM SIGPLAN /SIGOPS international Conference on 
Virtual Execution Environments. VEE '09. ACM, New York, NY, 
111-120. 

[Wieërs2010] D. Wieërs. Dstat: Versatile resource statistics tool. 
http://dag.wieers.com/home-made/dstat/. 

[Wiseman2003] Y. Wiseman , D. Feitelson, Paired Gang Scheduling, 
IEEE Transactions on Parallel and Distributed Systems, v.14 n.6, 
p.581-592, June 2003. 

[Yaron2007] Yaron. Xen Wiki. Credit Scheduler. 
http://wiki.xensource.com/xenwiki/CreditScheduler November, 
2007. (accessed August 2010). 

[Yee2010] Yee, J. A y-cruncher-A Multi-Threaded Pi-Program. 
http://www.numberworld.org/y-cruncher/, August 2010. 

[Zhang2008] X. Zhang, Y. Dong. Optimization Xen VMM Based on Intel 
Virtualization Technology. International Conference on Internet 
Computing in Science and Engineering, 2008 (ICICSE’08). 

 

 

 


