Scheduling Large Jobs by Abstraction Refinement

Vasu Singh
Joint work with Thomas Henzinger, Thomas Wies, Damien Zufferey
IST AUSTRIA
A Word on Our Background

• Formal Verification Community

• My work: Formal Verification of Concurrent Programs and Distributed Systems

• In general, formal verification is *undecidable*. In many relevant cases, it is computationally hard. We develop techniques that make verification tractable.
A View into Our World

Program P:
\[
X := 0 ; Y := 5 \\
\text{while (} X < 50 \text{)} \\
\quad \{ \\
\quad \quad X := X + 1 \\
\quad \quad Y := Y - 1 \\
\quad \}\ \\
\text{assert(} Y < 5 \text{)}
\]

Build Abstraction

Program P1:
\[
X := 0 ; Y := 5 \\
\text{while (*)} \\
\quad \{ \\
\quad \quad X := X + 1 \\
\quad \quad Y := Y - 1 \\
\quad \}\ \\
\text{assert(} Y < 5 \text{)}
\]

Refine Abstraction

Program P2:
\[
X := 0 ; Y := 5 \\
X := X + 1 \\
Y := Y - 1 \\
\text{while (*)} \\
\quad \{ \\
\quad \quad X := X + 1 \\
\quad \quad Y := Y - 1 \\
\quad \}\ \\
\text{assert(} Y < 5 \text{)}
\]

We want to prove that P is correct.
First approach: Run the whole program concretely.
Second approach: Use abstraction refinement!
In general

• What is an abstraction?
 – A concise representation of a system
 – Rely on over-approximations or under-approximations of the behavior of the system
 – A good abstraction loses a lot of irrelevant information and little relevant information
 – What is relevance? Depends on what property we are looking for!
In general

• Why do we use abstractions?
 – They often allow fast efficient solutions where concrete solutions are tedious, or even infeasible.
 – If an abstraction is too coarse for some purpose, one always has a possibility to refine it closer to the real system.
We abstract all the time!

- The idea is not limited to formal verification community!
In daily life

A: Mr. X has 3 fast cars!
B: Which ones?
A: Aston Martin, Lamborghini, Ferrari!

[ABSTRACTION]

[REFINEMENT]
In technology

• Image and video compression

• Program analysis

• Machine learning (classification)

• In general, whenever the concrete system is too big to handle!
THE CLOUD SCHEDULING PROBLEM
A directed acyclic graph (DAG) of tasks
Nodes marked with worst case computing duration
Edges marked with data transfer
These can be estimated for a large class of jobs in NLP, machine learning, image processing, bioinformatics (parametrized by input size)
Cloud

• A connected graph

• Nodes marked with computation power

• Edges marked with link bandwidth
Schedule

• A function from tasks to node-start time pairs
A Large Job

Thousands of tasks

Multiple computation layers

14 April 2011

EuroSYS 2011
A Data Center

Thousands of Compute Nodes
Given the scale, conventional wisdom says:

Use dynamic scheduling
Example: Hadoop

Job → Job Tracker → Task Tracker → Task Tracker → Task Tracker → Task Tracker
Hadoop

Dynamic scheduling using Task Queues

Does not allow apriori knowledge of when a job finishes

A user cannot be promised a deadline

A cloud cannot plan ahead on future resource usage

Certainly, if task characteristics are not available, dynamic scheduling is the best option!
Can we do better?

• We have talked a lot about managing data over the past few years

• As computation moves to the cloud, we might want to manage that too!

• Can we plan ahead our computation?
Static Scheduling

• Static schedule: a schedule computed before executing the job

• Benefits:
 – The user can be promised a deadline
 – The resources can be planned

• Drawbacks:
 – Generally computationally expensive
Static Scheduling

• Computing optimal schedule: NP-hard

• Heuristics (Greedy, deadline division etc.): $|J|.|C|$

• With 1000 tasks job and 200 nodes cloud, a greedy scheduler takes up to 5 minutes!
The Core Idea

• Over-approximate the resource requirements of the job J to get Abs J

• Under-approximate the computing power of the cloud C to get Abs C

• Get a static schedule for (Abs J, Abs C). Use it as a schedule for J, C
An over-approximation of resource requirements

D = Duration
M = Multiplicity

D: 3
M: 2

5
5
3
2

1

D: 2
M: 2

1
Data Center Abstraction

An under-approximation of available resources

S: Speed
M: Multiplicity

14 April 2011
EuroSYS 2011
Generic AR Scheduler

Build Abstractions

Obtain Schedule

Concrete Schedule

Refine
Job, Cloud

Not Good Enough?

Check Quality
(e.g. makespan, Utilization)

Good enough?
Use schedule
Generic AR Scheduler

1. Build Abstractions
2. Obtain Schedule
3. Concrete Schedule
4. Check Quality (e.g. makespan, Utilization)
5. Refine Job, Cloud

Not Good Enough?
Important Job Abstractions

• Topological: Group tasks as per a topological sort of the job DAG

• X-similar: Partition tasks in the topological sort in a manner that no abstract task has two tasks of duration D_1 and D_2 such that $D_2 > D_1$.X
Important Cloud Abstraction

• Rack abstraction: Create an abstract node for a group of nodes on a rack
Generic AR Scheduler

Build Abstractions

Obtain Schedule

Concrete Schedule

Check Quality (e.g. makespan, Utilization)

Refine Job, Cloud

Good enough?

Use schedule

Not Good Enough?

14 April 2011

EuroSYS 2011
Two AR Schedulers

• FISCH – Free Intervals Scheduler

• BLIND – Buddy Lists IN Datacenters
THE FISCH SCHEDULER
Abstractions for FISCH

• Starts with topological abstraction of job

• Keeps a constant rack abstraction of cloud
While an abstract task is yet to be scheduled:
- Choose an abstract task T such that all predecessors of T have been scheduled.
- Schedule T on an abstract node N in order to minimize the finish time of T.

A schedule for all concrete tasks in T_1 has been computed.
Checking for An Abs Task on An Abs Node

N1: (2, 5), (8, 12), (20, 25)
N2: (4, 9), (12, 35), (42, 45)
N3: (10, 20), (25, 32), (35, 45)

• One possible data structure:
 – Every abstract node consists of the information as a sequence of (start_time, end_time) pairs when a concrete node is busy

• To schedule an abstract task of duration D and multiplicity M, we search for $M D$-sized gaps

• Complexity: $O(\text{number of tasks scheduled})$
Search Engine 101

- To search for Salzburg in these documents: we can go through each document one by one (Imagine Google doing that!)
- OR We can maintain a data structure as follows:
 - Salzburg: (D1, Line 4); (D2, Line 1), (D3, Line 2)
 - city: (D1, Line 3); (D2, Line 2)
- This data structure is known as the inverted index
- Benefit: Finite dictionary size leads to cost amortization
Inverted Indices in FISCH

Node: (start, end) sequence
- N1: (2, 5), (8, 12), (20, 25)
- N2: (4, 9), (12, 35), (42, 45)
- N3: (10, 20), (25, 32), (35, 45)

Interval size: (Node, start) sequence
- 3: (N1, 5), (N2, 9), (N3, 32)
- 5: (N3, 20)
- 7: (N2, 35)
- 8: (N1, 12)
- _: (N1, 25), (N2, 45), (N3, 45)

Benefit:
To get M intervals of size D, we simply look at entries of N \(\geq D \), and return first M intervals.
FISCH Summary

• Starts with a topological abstraction of the job, and a rack-abstraction of the cloud
• Uses inverted data structure to keep track when every concrete node is free or busy
• Greedy scheduler
• Refines the topological job abstraction when necessary
• Many details described in the paper!
THE BLIND SCHEDULER
Abstractions

• Start with an X-similar topological job abstraction

• A single abstract node as cloud abstraction
Request 1: 2 tasks of duration 8 at time 0
Request 2: 2 tasks of duration 4 at time 4
BLIND by example

No request until time 8
BLIND by example
BLIND Summary

• Keep the abstraction of the cloud just as coarse as required

• On an incoming scheduling request, fragment the abstraction in a minimal fashion

• More details in the paper
Generic AR Scheduler

- J
 - Build Abstractions
 - Abs J
 - Obtain Schedule
 - Concrete Schedule

- C
 - Abs C

- Concrete Schedule
 - Refine Job, Cloud
 - Not Good Enough?
 - Check Quality
 - (e.g. makespan, Utilization)
 - Good enough?
 - Use schedule

14 April 2011
EuroSYS 2011
Check Quality: 2 Metrics

- **Cloud Utilization**: What is the proportion of used intervals to total scheduling duration across all nodes?
 - [80%]
 - [100%]
 - [30%]

- **Schedule Makespan**: Compared to a sequential execution of the job, how much better is the duration of the schedule?
Simulation Experiments

Clouds

- 2-tier cloud

Half of the nodes:
speed x,
Other half:
speed 1.5 x

Jobs

- Wavefront (WF)
- MapReduce (MR)
- Matrix Mutl (MM)
- FFT Transform (FFT)

EuroSYS 2011
Simulation Results 1

- We create a sequence of 1000 jobs (each job with 1000 tasks with nonuniform data and compute requirements)
- We measure scheduling latency per task and cloud utilization on 2-tier cloud with 1600 nodes

<table>
<thead>
<tr>
<th>Job</th>
<th>Latency (ms)</th>
<th>Util</th>
<th>Latency (ms)</th>
<th>Util</th>
</tr>
</thead>
<tbody>
<tr>
<td>MR</td>
<td>0.34</td>
<td>86%</td>
<td>0.32</td>
<td>93%</td>
</tr>
<tr>
<td>MM</td>
<td>1.34</td>
<td>55%</td>
<td>1.95</td>
<td>77%</td>
</tr>
<tr>
<td>FFT</td>
<td>1.89</td>
<td>68%</td>
<td>1.40</td>
<td>78%</td>
</tr>
<tr>
<td>WF</td>
<td>1.57</td>
<td>49%</td>
<td>0.71</td>
<td>62%</td>
</tr>
</tbody>
</table>
Simulation Results 2

- We then compare FISCH and BLIND to a concrete greedy scheduler on a sequence of 100 jobs.
- We measure scheduling latency per task and cloud utilization on 2-tier cloud with 210 nodes.

<table>
<thead>
<tr>
<th>Scheduler</th>
<th>Latency (ms)</th>
<th>Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>293</td>
<td>96%</td>
</tr>
<tr>
<td>FISCH</td>
<td>0.27</td>
<td>92%</td>
</tr>
<tr>
<td>BLIND</td>
<td>0.16</td>
<td>91%</td>
</tr>
</tbody>
</table>
More Simulation Results

• ... in the paper
COMPARISON WITH HADOOP
A Word of Caution

• Static scheduling alone will not work in a data center due to
 – High variability in data center performance
 – Task durations are conservative estimates
• For comparison to Hadoop, we used static scheduling with backfilling (a dynamic scheduling technique)
• In this work (and the paper), we focus on static part, as there lies the foundation of this work
Setup

• Job
 – A MapReduce Image Transformation Job
 – Size of each image: 4 MB
 – Mapper: An image transformation, requires 8.1 seconds on average, set the estimate to 40 seconds (use backfilling to use empty spaces)
 – Reducer: Identity operation

• Cloud
 – Amazon EC2 m1.xlarge instances (15GB RAM, 4 virtual cores, 64-bit)
 – Number of mappers = 50 * number of instances

• Hadoop streaming version 0.19.0
Results

![Bar chart showing job duration in seconds for different numbers of instances for FISCH, BLIND, and Hadoop.]
Observations

• The Hadoop framework requires large runtime overhead: results in slowdown of the job execution

• Offline scheduling allows to prefetch data in case of multiple computation stages, whereas dynamic scheduling does not
Conclusion

• Proposed a new “offline” alternative for scheduling jobs on datacenters
• Goal: bring a deep theoretical concept from the formal methods community to build better systems
• We believe we have just scratched the surface of some appealing techniques for managing computation on the cloud
• Feel free to dive in!
Questions?