
Finding Complex Concurrency Bugs

in Large Multi-Threaded Applications

Pedro Fonseca, Cheng Li, and Rodrigo Rodrigues
Max Planck Institute for Software Systems (MPI-SWS)

firstname.lastname@mpi-sws.org

Abstract

Parallel software is increasingly necessary to take advantage

of multi-core architectures, but it is also prone to concur-

rency bugs which are particularly hard to avoid, find, and

fix, since their occurrence depends on specific thread inter-

leavings. In this paper we propose a concurrency bug detec-

tor that automatically identifies when an execution of a pro-

gram triggers a concurrency bug. Unlike previous concur-

rency bug detectors, we are able to find two particularly hard

classes of bugs. The first are bugs that manifest themselves

by subtle violation of application semantics, such as return-

ing an incorrect result. The second are latent bugs, which

silently corrupt internal data structures, and are especially

hard to detect because when these bugs are triggered they

do not become immediately visible. PIKE detects these con-

currency bugs by checking both the output and the internal

state of the application for linearizability at the level of user

requests. This paper presents this technique for finding con-

currency bugs, its application in the context of a testing tool

that systematically searches for such problems, and our ex-

perience in applying our approach to MySQL, a large-scale

complex multi-threaded application. We were able to find

several concurrency bugs in a stable version of the appli-

cation, including subtle violations of application semantics,

latent bugs, and incorrect error replies.

Categories and Subject Descriptors D [2]: 5

General Terms Algorithms, Reliability

Keywords Concurrency bugs, Latent bugs, Linearizability,

Semantic bugs

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

EuroSys’11, April 10–13, 2011, Salzburg, Austria.
Copyright c© 2011 ACM 978-1-4503-0634-8/11/04. . . $10.00

1. Introduction

As processors become more and more parallel, applications

must become increasingly concurrent to take advantage of

this additional processing capacity. However, concurrent

systems are notoriously difficult to design, test, and debug,

since they are prone to concurrency bugs whose occurrence

depends on specific thread interleavings.

Recent advances in the area of testing concurrent sys-

tems have provided a series of new techniques to systemati-

cally explore different thread interleavings and maximize the

chances of exposing concurrency bugs [Burckhardt 2010b,

Musuvathi 2008]. However, these techniques assume that

concurrency bugs manifest themselves either by causing the

program to crash (e.g., due to an illegal memory access) or

by triggering assertions written by the developer.

This assumption, however, prevents such tools from cap-

turing some bugs, namely those that fall into the following

two important classes. The first class are bugs that mani-

fest themselves as any violation of the application seman-

tics which is not caught by the assertions that the program-

mer wrote, such as returning an incorrect result to the user.

The second class are latent bugs, which silently corrupt in-

ternal data structures, and only manifest themselves poten-

tially much later when they are triggered by a subsequent

input. These two classes constitute a non-trivial fraction of

the concurrency bugs found in important concurrent appli-

cations [Fonseca 2010].

In this paper we propose a new technique for finding la-

tent and/or semantic concurrency bugs. Our thesis is that it

is possible to implicitly extract a specification, even for large

multi-threaded server applications, by testing if the applica-

tion obeys linearizable semantics [Herlihy 1990]. Intuitively,

linearizability means that concurrent requests behave as if

they were executed serially, in some order that is consistent

with the real-time ordering of the invocations and replies to

the requests. While similar ideas have been applied to the

design of tools for testing concurrency bugs, they have been

limited to testing the atomicity of small sections of the pro-

gram or library functions with at most hundreds of lines of

code [Burckhardt 2010a, Vafeiadis 2010, Xu 2005].We push

this idea to an extreme by postulating that even a complex

multi-threaded server with hundreds of thousands of lines of

code can come close to obeying linearizable semantics.

By systematically testing if linearizability is upheld, we

can find subtle violations of the application semantics with-

out having to write a specification for each concurrent ap-

plication. Furthermore, by checking if both the output and

the internal state of the application obey the inferred seman-

tics, we can identify not only the bugs that manifest them-

selves immediately as a wrong output, but also those that

silently corrupt internal state. However, achieving a mean-

ingful state comparison requires abstracting away many of

the low-level details of the state representation. We accom-

plish this by means of simple annotations that are provided

by the tester. This approach also allows the tester to pro-

gressively increase the chances of finding latent concurrency

bugs by incrementally annotating the state.

We implemented PIKE, a testing tool that brings together

these principles and state of the art techniques for the sys-

tematic exploration of thread interleavings. We describe the

design and implementation of PIKE, and our experience in

applying it to MySQL, a multi-threaded database server with

hundreds of thousands of lines of code, which represents a

share of 40% of the database market [Oracle a].

Our experience demonstrates that, despite the size and

complexity of MySQL, in practice the semantics it provides

are sufficiently similar to linearizability for our detector to

be effective. Although we used only a simple battery of in-

puts for testing (based on the testing inputs that shipped with

the application) we were able to find a considerable num-

ber of concurrency bugs in a stable version of the database.

Furthermore, the effort to provide the required annotations

was small, and after installing simple filters we also found

the number of false positives to be modest. All of this was

achieved without having to figure out which were the correct

outputs (or final states) for any given inputs, since PIKE au-

tomatically extracts a specification by comparing the outputs

and states of different interleavings.

The remainder of the paper is organized as follows. Sec-

tion 2 presents the problem and gives an overview of our ap-

proach. In Section 3 we introduce PIKE, the tool that we built

to find concurrency bugs. Section 4 describes our experience

applying PIKE to MySQL. Section 5 presents the results that

we obtained from our experience. Finally, Section 6 reviews

the existing related work and then we conclude in Section 7.

2. Overview

This section gives an overview of the specific classes of

concurrency bugs we are targeting, and the main insights

behind our solution.

2.1 Problem statement

The focus of this work is to improve testing techniques for

detecting concurrency bugs. By concurrency bugs we mean

any deviation from the intended behavior of the applica-

tion that is not triggered deterministically: triggering con-

currency bugs requires that the application is given not only

a specific set of inputs that cause the unintended behavior,

but also that the operating system executes the application

with a specific schedule of thread interleavings. This non-

determinism that is introduced by thread scheduling makes

the application more error-prone, on the one hand, and these

concurrency bugs harder to find, on the other.

In this paper we focus on two categories of concurrency

bugs that are particularly hard to detect: semantic and latent

bugs.

Semantic concurrency bugs manifest themselves by vi-

olations of the application semantics (e.g., by providing a

wrong reply to clients). This category of bugs excludes those

that crash the application or otherwise generate an excep-

tion, for example, by performing illegal memory accesses.

Semantic bugs are hard to detect because it is hard to create a

specification for reasonably complex applications, and some

of the deviations from the intended behavior can be quite

subtle. A partial form of specification that can be leveraged

to capture some of these problems are assertions, but these

only capture some deviations from the intended semantics

and are therefore of limited use.

The second category of concurrency bugs that we focus

on are latent concurrency bugs [Fonseca 2010]. A latent

bug is one whose effects are exposed to clients at a signif-

icantly different point from the point where it is triggered

(i.e., where the problematic thread interleaving leads to the

application deviating from the internal behavior that was in-

tended by the developer). Note that the two categories are

not mutually exclusive, i.e., a bug can be latent and expose

itself to clients by returning a wrong reply.

Because the main focus of our paper are multi-threaded

server applications, we can be more specific about what it

means for triggering and exposing the bug to occur at differ-

ent points. In particular, server applications follow a pattern

where they receive requests from clients, start the process

of handling them, and conclude handling the requests when

they issue the replies. Given this pattern, we define a concur-

rency bug as latent when the set of requests that trigger the

bug does not include the subsequent request that causes the

bug to be exposed to the clients.

The fact that latent bugs require an extra request to be-

come visible means that testing tools can easily miss these

bugs. In particular, this would happen if the set of inputs

used by these tools would cause the state corruption to take

place but not include the input that subsequently exposes the

misbehavior. For example, in many applications, write oper-

ations typically only return to clients a status code specifying

whether the write was successful or not. In this case, observ-

ing the application response might not be sufficient to infer

whether the write operation was properly executed or not.

Furthermore, as we will see in some of the cases we found

in a real application, it is often not simple to determine which

subsequent inputs would be required to expose the incorrect

internal state.

This supports the idea that, given the nature of latent

concurrency bugs, detection tools should inspect the internal

state of the application and not limit themselves to analyzing

the outputs. However, it is hard to analyze the state of an

application to check for its correctness, since it requires

application-specific knowledge of what it means for the state

to be incorrect.

2.2 Linearizability: The spec from within

To address the absence of a specification capturing these de-

viations from the intended application semantics we propose

extracting such a specification from the behavior of the same

application but under different conditions.

In particular, our thesis is that, even for a complex server

application with hundreds of thousands of lines of code, the

semantics that are intended by the programmer are normally

close enough to linearizability [Herlihy 1990] that we can

use it as a good first approximation of a specification.

To formally define linearizability, we must first define the

notion of history, which is a finite sequence of events that

can be either invocation of operations or responses to opera-

tions. A history is classified as sequential if its first event is

an invocation, each invocation is immediately followed by a

matching response, and each response is followed by an in-

vocation. Two histories H and H ′ are defined as equivalent

if, for every process P , the sequence of invocations and re-

sponses performed by P is the same, i.e., H |P = H ′|P . A

history H induces an irreflexive partial order <H on opera-

tions such that o0 <H o1 if the response event for o0 pre-

cedes the invocation of o1. Given these definitions, a history

of events in a concurrent system H is linearizable if there is

an equivalent sequential history S (called a linearization of

H) such that <H⊆<S.

Intuitively, this means that, despite its internal concur-

rency, the server behaves as if requests were processed in se-

quence, and that this processing took place instantaneously

some time between the moment when the client invoked the

request and received the respective reply.

Therefore, assuming the application tries to follow lin-

earizable semantics, a testing methodology can be devised

by comparing each concurrent execution of the application

with all possible linearizations (i.e., all possible sequential

executions of the requests) for the same input. If none of

the linearizations matches the behavior of the concurrent ex-

ecution, then a concurrency bug is suspected to have been

triggered and an error is flagged.

Testing for linearizability would only require us to inspect

the outputs of the concurrent execution against the outputs

of the linearizations. This would be sufficient to capture

semantic bugs, but not to capture latent bugs. To handle

latent concurrency bugs, we can resort to the same principle

of testing for linearizability but applying it to the state of

Output C
State C

Output A
State A

Output B
State B

Conc C Seq A Seq B

OR�
?

R1

R2

R1

R1R2

R2

Figure 1. Checking for linearizability of state and outputs

of two concurrent requests.

the application. This testing methodology is summarized

in Figure 1. It shows two concurrent requests, R1 and R2,

whose execution overlaps in time (Conc C). To check if the

concurrent execution is linearizable we must compare the

it to all possible linearizations, namely R1 followed by R2

(Seq A) and R2 followed by R1 (Seq B). Linearizability is

obeyed when both the state and the output of the concurrent

execution match both components in at least one of the two

linearizations.

Note that by using linearizability as a specification, we

are not necessarily extracting a correct specification of the

system, not only because the programmer might not have

intended the application to obey linearizable semantics, but

also because the sequential execution may be buggy, and

consequently the deviation to the expected behavior could go

undetected. The latter issue is not problematic in the case of

concurrency bugs, though, since these arise from the lack of

proper synchronization among multiple threads, which does

not arise when executing requests without concurrency.

2.3 Capturing application state

As we mentioned, to be able to find latent bugs we need to

compare both the output and the state of different executions

of the application.

While outputs are fairly straightforward to compare, the

same cannot be said about the state of the application. In par-

ticular, the naı̈ve approach of simply comparing the state of

the various executions bit-by-bit is doomed to fail. The rea-

son is that by changing thread interleavings, the low-level

state of the executions will quickly diverge. For instance, if

we consider operations such as dynamic memory allocation,

slight changes in the thread interleaving could easily change

the relative order of allocation requests, and therefore the

memory layout of allocated heap space would likely be dif-

ferent as well.

We address this by asking the tester or the developer of

the application to provide a state summary function which

captures an abstract notion of the state in a way that takes

into consideration the semantics of the state and allows for

a logical comparison, instead of a low-level physical com-

parison. As an example, a data structure that represents a set

of elements should be compared across different executions

in such a way that is not only oblivious to the memory lay-

out, but, given that sets can be stored in data structures that

imply an ordering such as a list, but the order in which the

elements of a set are listed is irrelevant, the state summary

function must be oblivious to this order.

While writing this extra code could be a burden for the

tester or the developer, we found that in practice these func-

tions are simple to write in part because the internal API

of the application is reasonably well defined. Additionally

we provide a small library that assists programmers in writ-

ing state summary functions for the most common types of

data structures. Finally, we note that in our testing frame-

work the state summary functions will always be scheduled

until completion, without the possibility of being preempted,

and therefore do not have to be synchronized with respect to

the existing code nor vice-versa.

2.4 Maintaining the summary functions

Annotating the application undoubtedly requires some effort

from testers. During the life-cycle of the application it might

not suffice to annotate it once – it might be necessary for

testers to revise the annotations when there are new versions

of the application. Major updates to the application (which

typically involve substantial code rewrites) are likely to re-

quire some effort to update the summaries.

But, in practice, we expect that many upgrades to the

application will maintain most of the properties of the data

structures as well as the interface that is used to access

them. In these cases, no changes to the annotations would

be required.

3. PIKE: A concurrency bug finding tool

In this section we describe how we combine our lineariza-

tion approach, which analyzes both the output and the state

of different interleavings for linearizability violations, with

state of the art testing techniques. The result is a bug finding

tool geared towards finding concurrency bugs that are tradi-

tionally hard to detect.

3.1 Systematic schedule exploration

The distinguishing property of concurrency bugs, in com-

parison with non-concurrency bugs, is the fact that only spe-

cific interleavings trigger these bugs. This implies that test-

ing concurrent applications requires finding mechanisms to

explore multiple thread schedules. However, with the excep-

tion of very small applications, it is not feasible to explore all

possible thread interleavings because of the state explosion

problem.

The traditional approach for exploring interleavings relies

on stress testing and noise generation [Ben-Asher 2006]. De-

spite their widespread use, these techniques suffer from three

important limitations. First, such techniques are not system-

atic, i.e., they do not try to avoid redundant or similar inter-

leavings. Second, such techniques do not attempt to priori-

tize interleavings that are more likely to trigger concurrency

bugs. And finally, when a bug is found, these approaches

may not allow for reliable replay of the interleaving that trig-

gered the bug.

To overcome these shortcomings, researchers have devel-

oped tools to explore thread interleavings in a more con-

trolled manner [Burckhardt 2010b, Eytani 2007, Musuvathi

2008]. These tools try to avoid redundant interleavings, pri-

oritize some interleavings over others, and are able to replay

previously run schedules. Such features greatly contribute

to improving the ability of developers to explore relevant

thread schedules and uncover concurrency bugs. However,

to detect when a bug is triggered the developer still has to

rely on techniques like programmer-written assertions or the

program generating an exception.

PIKE combines our proposed linearizability detector with

the random scheduler algorithm proposed by Burckhardt et

al. which is used by PCT [Burckhardt 2010b]. Here, we

briefly describe the general idea of the random scheduler

algorithm. We refer the reader to the original paper for a

more detailed explanation.

At the start of the test run, the random scheduler assigns a

fixed random priority to each thread and, to control the out-

come of data races, it will only allow one thread to run at

a time. During execution it makes sure that, at any point in

time, the highest priority unblocked thread is the one that

is allowed to run. Additionally to explore bugs of differ-

ent depth, at a few random points during the execution it

changes the priority of the threads. This simple approach,

which offers probabilistic guarantees, has been shown both

analytically and empirically to work well at uncovering con-

currency bugs [Burckhardt 2010b].

3.2 Handling false positives

One of the challenges we expected to face when deploying

PIKE is that linearizability would not necessarily hold for a

large, complex application with rich semantics and hundreds

of thousands of lines of code. These cases, if not appropri-

ately dealt with, could lead to the tool outputting a large

number of false positives.

An example of a data structure that we found to some-

times not obey linearizability is an application-level cache.

In particular, this happened in situations where the appli-

cation logic detected that two requests were being handled

concurrently and that would cause a cache entry that one of

them would create to be invalidated. In these cases, the ap-

plication would conservatively not insert that entry into the

cache. This behavior might have an impact on performance

but does not affect correctness, i.e., an application can al-

ways choose not to insert an entry into the cache. However,

if the application were to execute the same requests sequen-

PIKE

SCHEDULER

STATE SUMMARY

FUNCTION

OUTPUT AND STATE

COMPARISON

BUG?

APPLICATION

NO

YES

TESTS

INSERT FILTER

INSPECT

RESULTS

PATCH

Figure 2. Overall architecture of PIKE. The system receives

as inputs a multi-threaded application and a test suite, and

contains a feedback loop that can be used by testers to

insert filters to avoid false positives when the application

deliberately violates linearizability.

tially, because no possible conflict would exist, the last re-

quest would be inserted into the cache.

To handle these cases, the state summary functions break

the state up into separate components; e.g., an application-

level cache would be an individual component. Furthermore,

we allow the tester to write a rule that enables the lineariz-

ability test to check for inclusion, instead of equality, among

the set of entries in some of the state components. In the

case of the application-level cache, this rule might allow for

checking whether the set of elements in the cache for the

concurrent execution are contained in set of elements in the

cache for at least one of the sequential executions. We found

this approach to work well in practice in reducing the num-

ber of false positives to a reasonable level.

Therefore, our final system design contains a feedback

loop where testers can add rules that describe such excep-

tions to linearizability, thus avoiding most false positives and

making the problem tractable.

Figure 2 illustrates the overall process. Developers pro-

vide PIKE with the application and the testing inputs. PIKE

will then run the application multiple times exploring differ-

ent thread interleavings and checking for linearizability of

both state and output. To conclude whether a bug was found,

the developer then inspects the results produced by PIKE

which include the output, the state and information about the

interleaving of the various executions. In case the developer

finds various cases of similar false positives he can simply

insert a rule to adjust the comparison functions and re-run

PIKE.

3.3 Implementation

As Figure 2 also shows, the implementation of PIKE is com-

posed of three components: the scheduler, the state summary

function, and the component to compare the state and output

of the application.

We implemented the scheduler in about 3, 000 lines of

C code. Our scheduler controls the thread interleaving by

intercepting the library calls of the target application and

forcing a single thread to run at a time which is randomly

chosen according to the random scheduler algorithm.

Our scheduler takes control of the application using

the LD PRELOAD environment variable and intercepts

the pthread library calls made by the application; i.e, the

scheduling granularity is at the level of the pthread li-

brary calls. Similar levels of granularity have previously

been found to produce good results at finding concurrency

bugs [Musuvathi 2008].

We require application writers to identify the location

where the handling code of each request begins and ends.

The scheduler needs to know about these locations to force

interleavings that translate into sequential executions. This

information also helps in debugging the application when

bugs are flagged. Since our scheduler only takes control

of the application when it makes pthread calls, it could

happen that the running thread (i.e., the runnable thread with

highest priority) invokes a system call that does not return.

In such a situation, the entire application would block – the

highest priority thread would be blocked on a system call

and the other threads would have previously been blocked

by the scheduler. A situation where this would occur is in

the location where the main thread of MySQL spawns new

threads to handle new client sessions. To avoid this, we make

the scheduler aware of that particular location in the MySQL

code and make the scheduler block the main thread as soon

as it creates all the expected client-session threads (which

is dependent on the input). In comparison with the effort

to annotate the application for the purpose of capturing the

application state, the effort required to identify these three

locations was negligible.

The random scheduler algorithm requires a few parame-

ters to be specified [Burckhardt 2010b]. In our experiments

we used the value 50, 000 as the maximum number of execu-

tion steps per run (after the initialization phase) and we used

a single priority inversion point (i.e., we tuned the scheduler

to find bugs with depth one). These values were empirically

found to produce good results for the application we stud-

ied.

The random scheduler algorithm also requires an anti-

starvation mechanism. Without this mechanism if the high-

est priority thread enters a busy wait cycle it would never

relinquish the processor and would prevent the entire ap-

plication from progressing. Examples where such situations

could occur are the instances where ad-hoc synchronization

methods are used [Xiong 2010]. We implemented the anti-

starvation mechanism simply by reducing the priority of the

running thread if it runs uninterrupted for more than a cer-

tain number of execution steps. We found this mechanism to

be particularly useful during initialization periods.

Our implementation also includes a generic library for as-

sisting in capturing the state of the application, however the

exact code to capture the state is dependent on the applica-

tion. In Section 4 we describe our experience with applying

PIKE to MySQL.

4. Experience

This section reports on the experience of applying PIKE to

find concurrency bugs in MySQL.

4.1 MySQL overview

MySQL represents a challenging case study for our testing

tool for several reasons. First, it is a large, complex codebase,

with about 360, 000 lines of (mostly C and C++) code and

rich application semantics. Second, databases are a critical

component of the IT infrastructure of many organizations

and therefore it is important to maintain and improve their

robustness. In particular, MySQL represents a share of 40%
of the database market [Oracle a], and is by far the most

popular open-source database server. Finally, MySQL is a

mature application with a quality development and mainte-

nance process. The results presented here report on applying

our technique to a stable version of MySQL (version 5.0.41).

One of the characteristics of MySQL is that it supports

different mechanisms, which are called storage engines, for

internally representing and manipulating the state of the

database. Users can control which storage engine to use dy-

namically by parameterizing certain requests during runtime

(e.g., Create Table) or specifying configuration options set

by an administrator. Storage engines represent a significant

fraction of the source code of MySQL and implement im-

portant parts of the database functionality such as support

for indexes and caches, the granularity of locks, and support

for compression, replication, or encryption.

To validate our detector we chose to apply it to the My-

ISAM storage engine. MyISAM [Oracle c] is considered to

be one of the most popular storage engines of MySQL [Ora-

cle b] and it has also traditionally been the default storage en-

gine [Oracle c]. In comparison to other engines, MyISAM is

optimized for throughput, and is distinctive in that it does not

provide the ability to group multiple operations into trans-

actions: instead users have at their disposal explicit locking

mechanisms to enforce consistency among groups of opera-

tions.

An important point to clarify regarding the semantics of

the database server is that we are using PIKE to test for

linearizability at the level of individual client requests (i.e.,

SQL operations), which may differ from the semantics that

are provided at higher levels, such as transactions. In particu-

lar, it is possible for a database server to offer semantics that

are weaker than linearizability, e.g., snapshot isolation at the

level of transactions, but still be linearizable at the level of

client requests.

4.2 MySQL internal state

As explained in Section 2, PIKE checks whether the ap-

plication exhibits a linearizable behavior by comparing the

internal state of different executions of the application.

To achieve this goal, PIKE needs to generate a high-level

representation of the internal state which is done in an

application-specific way.

By analyzing the source code and based on existing stud-

ies [Fonseca 2010] we were able to identify the following

data structures, which we believe capture the most impor-

tant components of the application state.

The query cache structure contains pairs of recent instruc-

tions that read the state of the database (SELECT statements)

and their respective results. This structure has been found by

its developers to be critical for servers to achieve good per-

formance in many common scenarios. The query cache, as

one would expect from a cache, should invalidate the rele-

vant entries when they become obsolete due to subsequent

and conflicting writes. If the invalidation logic in the appli-

cation is incorrect it is likely that such mistakes will lead to

bugs in which the application returns the wrong results to

clients.

The table cache stores a set of descriptors, each of which

is an in-memory representation of a table schema. When

a new thread wants to manipulate a table, it first queries

the table cache to get a table instance directly if available.

Otherwise, in case of a miss, the table schema will be loaded

from disk and a new entry will be inserted into the table

cache structure.

Another type of data structure that we annotated were the

data files. A data file is a critical data structure that stores

the actual records for a particular table and is maintained in

persistent storage.

To quickly perform searches and find the relevant records

in a table, avoiding sequentially scanning the whole table,

MySQL also maintains for each table an index file which

consists of a set of indexes. Each entry in the index file

consists of a pair of elements. The first element is a key (or

a group of keys) while the second element is a pointer to the

appropriate record in the data file.

The key cache is a repository for frequently used blocks

from the index files of all tables. The index block will be

loaded into the key cache before the first access to a table.

From that moment on all subsequent operations will be per-

formed on key cache data and will be flushed back to disk at

the appropriate time.

Finally, the binary log is another important data structure

that we annotated. It stores a sequence of all operations

that changed the database state, in their order of execution.

This structure is critical for replication. Replicas keep their

state in sync by shipping the binary log between them and

re-executing the requests in the order they appear. Missing

entries, wrong entries or entries in the wrong order will

likely cause replicas to diverge and therefore it can seriously

affect the correctness of the service. Additionally the binary

log is important for recovery purposes.

4.3 State summary functions

To write the summary functions, which capture different

parts of the state, we analyzed these different state compo-

nents and classified them in two categories according to what

type of data structures they represent.

Most data structures fall into the set category, since they

are collections of elements where their order does not matter,

except for the binary log structure which is an append-only

sequence where the order in which the elements are added

needs to be captured by the summary function.

Starting with the state components that describe sets,

their summary function needs to be invoked in all places

in the source code where elements are added, removed or

modified to or from any of these data structures. Despite

the complexity of the state, locating these turned out not

to be too complicated since the source code of MySQL

is reasonably well structured and there are functions that

encapsulate these operations which are called from different

points in the code.

At each of these points we invoke a generic summary

function for sets, which is designed to provide an efficient

update and comparison operation. This function maintains a

cumulative hash value for the set (S) which is initialized to

zero at the beginning of the execution. Then, upon adding

or removing an element e, the summary function captures a

hash of the deterministic parts of the element being added or

removed (He). In this step it is important to remove sources

of non-determinism like timestamps that would lead to state

divergence. Some of the data structures annotated contain

elements contain pointers. In these cases instead of hashing

the pointers we hash the elements they point to.

Then, the value of He is either added or removed to

the cumulative set value S. Both adding and removing is

done by XORing the new value with the previous cumulative

value, i.e.:

Snew = Sold ⊕ He. (1)

This leads to a compact representation of the state of the

set that allows for a trivial comparison operator simply by

comparing hashes.

Operations that modify elements are handled by treating

them as a sequence of an add and a remove operation.

For the binary log, this representation does not work

because it does not capture the order in which elements

were added to the sequence. Therefore, we change the above

equation to capture this order by hashing the concatenation

of the previous cumulative value with the new element.

Snew = SHA1(Sold||e). (2)

Finally, we also needed to extend this scheme to support

containment instead of equality checks for sets. This can

be easily achieved by replacing the cumulative XOR of the

hash values with a counting Bloom filter [Bonomi 2006].

Alternatively, we can just list all the elements in the set and

compare them exhaustively, which is what is done by our

implementation.

4.4 Input generation

Like other dynamic bug finding tools, our testing technique

requires exploring different inputs in an attempt to find sit-

uations in which the application behaves incorrectly. There-

fore we must find a diverse set of concurrent database opera-

tions that stand a good chance of triggering bugs. Again, the

rich semantics and wide interface of MySQL make it partic-

ularly challenging given that we can only practically explore

a small subset of all possible inputs.

We considered different options for generating test in-

puts. The obvious option is to generate the inputs manually;

however this can be tedious and impractical for applications

like MySQL. Another option is to randomly generate inputs,

possibly with the aid of grammars that steer the input gener-

ation into generating inputs that are considered more useful.

This option suffers from the problem that it is not straight-

forward to instrument the grammar in such a way that it cre-

ates multiple concurrent requests that are likely to cause con-

tention for some particular part of the state of the application.

A third option is to use tools that analyze the application, try

to understand its behavior, and then attempt to automatically

generate useful inputs [Cadar 2008a, Godefroid 2005]. How-

ever, while these tools work well for small and medium size

applications, it is unclear if they can currently scale to the

size of a codebase like MySQL.

Therefore we pursued a fourth option. MySQL already

contains a large test suite, which has been manually created

by the developers and testers of the application. Some of

the tests were added specifically to prevent previous bugs

from recurring in subsequent versions of the application.

However, these tests are sequential tests and therefore would

not be useful for finding concurrency bugs. Our solution

was to convert these sequential tests into concurrent tests by

breaking up the sequence of requests contained in a test and

executing them concurrently by separate clients.

When deciding howmany concurrent clients to use in our

tests, we took into account that studies show that a signifi-

cant amount of the concurrency bugs found only require a

small number of threads to be triggered (typically two) [Lu

2008]. A separate study also showed that only a small num-

ber of requests is sufficient to expose bugs [Sahoo 2009].

Taking these factors into consideration, and to make the pro-

cess more efficient, we generated tests involving two clients

and with a limited number of requests per client (typically

less than ten requests and starting from an empty database).

The original complete test suit contained approximately

50, 000 requests, as counted by the number of semicolons.

Using our approach we manually converted around 5% of

those requests into concurrency tests, thus generating 1550
pairs of inputs from concurrent threads.

One could imagine extending MySQL’s traditional test-

ing approach to also include concurrency bugs tests instead

of just deterministic tests. Similarly to Pike, the extension to

the traditional testing approach would also require the use

of tools to explore thread interleavings. One of the problems

with this extension is that testers would have to manually

specify (and update) the set of expected outputs for each test

case. Pike instead finds that set automatically for arbitrary

inputs. Furthermore Pike analyzes the application internal

state to detect latent concurrency bugs.

In the future, we plan to explore other approaches for

generating inputs and use them with PIKE.

5. Results

In this section we present the results of our experience of

applying PIKE to MySQL.

5.1 Development effort

The first result we report on was the the amount of effort

needed to understand the code of MySQL and develop the

state summary functions. The annotations we inserted added

up to 600 lines of code, as counted by the number of semi-

colons. This represents less than 0.2% of the number of

semicolons in the MySQL source code.

While annotating the source code of MySQL, most of the

effort was spent understanding the source code. We spent a

total of about two man-months in the process of understand-

ing both the structure and semantics of the application and

annotating the source code.

5.2 Bugs found

We ran PIKE onMySQL opportunistically in a shared cluster

using multiple machines (up to 15 machines). Each machine

in the cluster had an AMDOpteron 2.6 GHz processor, 3 GB

of RAM and was running a distribution of Linux with kernel

version 2.6.32.12.

We tested MySQL by running it on 1550 inputs and for

each input we configured PIKE to explore 400 different inter-
leavings using its scheduler. The experiment lasted for about

one month. Our implementation of PIKE could be optimized

to reduce the computational cost in several ways. In partic-

ular, we could avoid going through the initialization phase

of MySQL for each run by taking advantage of snapshoting

techniques. Another way of speeding up testing could be to

run PIKE on the target application previously compiled with

optimization flags. The few inputs for which suspicious be-

havior is observed could then be re-executed with additional

debugging support (on the version of the target application

not optimized and with application-level debugging options

enabled).

During our testing experiments PIKE was able to iden-

tify a total of 12 inputs that triggered concurrency bugs. Ta-

ble 1 presents an overview of the inputs that we found to

trigger incorrect behavior and in the following subsections

we present our findings in more detail for different types of

bugs, categorized according to their effects.

In some cases, we had different inputs that triggered bugs

that showed similar effects. Because it was difficult for us

to classify whether they correspond to the same bug or not,

we decided to present the results in a more objective way by

presenting in detail all of the inputs and effects of the bugs

we found, instead of trying to count the number of distinct

bugs. We then speculate about which of those inputs are

likely to be triggering what could be considered the same

bug.

Table 2 lists the various inputs that were flagged as posi-

tives by PIKE and that we confirmed to be caused by con-

currency bugs. The table presents the requests that were

concurrently executed in the test cases that triggered con-

currency bugs together with the number of distinct thread

schedules in which the program exhibited the incorrect be-

havior. Additionally, we also present information about the

state and the output that were observed. Specifically, the ta-

ble indicates whether the output of the concurrent execution

matches the output of the sequential executions (OA and

OB) and whether the state at the end of the concurrent exe-

cution matches the state at the end of either of the sequential

executions (SA and SB).

Given the linearization algorithm, PIKE flags a concurrent

execution as having triggered a concurrency bug if it cannot

find a sequential execution (X) that produces both an output

and a final state that match its own (i.e., that has OX=”Yes”

and SX=”Yes”). We can see that all entries in Table 2 fail to

meet this condition.

In addition to discrepancies in the output or the state of

the different interleavings, we also found some cases where

the execution of the application blocked, which might have

been caused by deadlocks, and cases where the applica-

tion crashed. We have not analyzed these cases, but they

are less interesting from our standpoint since these poten-

tial bugs would also have been found by other tools like

Chess [Musuvathi 2008], or tools that are designed to find

deadlock bugs [Naik 2009].

In our experiments, we did not come across non-concurrency

bugs, and this is not surprising for two reasons. First, we

used inputs that were based on the existing regression tests

contained in the MySQL source code, and thereforeMySQL

should have been previously tested for these or very similar

inputs. Second, a non-concurrency bug, if triggered would

have likely produced the same wrong results in all interleav-

ings, regardless of the interleaving being sequential or not,

and therefore our detector would not have flagged it.

One point we would like to highlight about these results is

that we used a testing suite that has been applied repeatedly,

albeit in a way that runs inputs sequentially. We postulate

that it might be possible to be even more effective if we

use a different set of inputs. The downside is that, because

External effect Non-latent Latent Total

Error 2 0 2

Semantic 2 8 10

Table 1. Number of inputs found to trigger concurrency

bugs according to latency and external effects.

we focused on what is not the latest version of MySQL, we

found that some of the bugs have already been fixed, as we

will detail next.

Next, we analyze in more detail the results for the two

categories of bugs that our technique is aimed at: violations

of the application semantics, and latent bugs. We further di-

vide the first category into semantic bugs and error bugs, de-

pending on whether the violation of the intended semantics

corresponds to an incorrect but non-error reply, or a more

explicit error.

5.2.1 Semantic bugs

Figure 3 illustrates a representative example of a semantic

concurrency bug in MySQL that was found by our detector.

In the figure the arrow indicates the interleaving that trig-

gers the bug. This bug is triggered when the server receives

a specific SHOW TABLE request and a DROP request con-

currently as shown in Table 3. Figure 3 shows a simplified

snippet of the source code that is involved in this concur-

rency bug. The first thread, while executing the SHOW TA-

BLE request obtains a list of names of tables. According to

the semantics of the database this returned list should contain

the names of all the tables in the database whose name con-

tains the string ”t1”. But, if before the first thread processes

the list of tables names the second thread is able to execute

the remove table() function, the open table list becomes ob-

solete. This in turn means that when the first thread resumes

execution it will try to call the open tables() function with

an argument that contains obsolete data and will not be able

to access the table that was dropped. The result is that the

second thread will return to the user a success message for

the DROP request. However, the first thread will return an

entry, for the now non-existent table, indicating that it exists

but some of the entries will contain the value NULL.

We note that this particular instance of a semantic bug

was eventually reported in the MySQL bug report database,

and patched in a version that succeeded the one we tested.

However, it is important to note that we did not use that

information during the process of generating inputs.

Other semantic bugs provided wrong results in even more

subtle ways. For example, there were bugs where the appli-

cation would simply provide wrong results based on stale

data.

5.2.2 Error bugs

A sub-class of the semantic bugs that we found can be la-

beled as error bugs. We considered bugs to be error bugs if

they manifest themselves by returning to the client an ex-

Request 1 SHOW TABLE STATUS LIKE ’t1’;

Request 2 DROP TABLE t1;

Table 3. Requests responsible for triggering the sample se-

mantic bug

Thread 1 Thread 2

void show_table_status(thd)

{

...

/*Gets a list of existing tables*/

table_list = get_tables_list(thd);

/*Returns an error for the non-

existing table*/

res = open_tables(table_list);

/*Ignores the previous error*/

get_schema_record(table_list);

...

}

int drop_table(table)

{

...

remove_table(table);

...

}

Figure 3. Sample semantic bug

plicit error message, but an error message which is not ap-

propriate given the requests that were executed. During our

experiments we found two cases in which error concurrency

bugs were triggered.

Table 4 presents the concurrent requests that were found

to be responsible for one of the error bugs. This bug occurs

when one of the threads attempts to execute aCREATE LIKE

request, which is supposed to create a new and empty table

with a schema that is identical to another existing table, and

a specific INSERT request that copies data from the existing

table into the new table. As illustrated in Figure 4, the first

thread, while handling the CREATE request, first copies

the definition file containing the schema for the existing

table. According to the synchronization logic in MySQL,

the second thread is allowed to execute the INSERT request

even before the first thread creates the index file and data

file. Because of this, while executing the INSERT, the second

thread is unable to open the data file and returns an error to

the user stating that the data file does not exist instead of

either succeeding (by writing data) or returning a different

error stating that the table does not exist.

This example illustrates an important point that error bugs

can also be subtle and difficult to distinguish from a cor-

rect execution, despite the fact that they return an error. This

is because very often an error message is a legitimate out-

come of the operation, but the concurrent execution returns

the wrong error message. Therefore, and unlike a situation

where the application crashes or an assertion fails, we must

know application-specific semantics to determine if an error

reply is incorrect or not, and PIKE has proven to be effective

in determining this.

Requests EXs
Output State

OA OB Effect SA SB Latent

CREATE TABLE t2 LIKE t1; ‡
9 No No Error No Yes Non-latent

INSERT INTO t2 SELECT * FROM t1; ‡

INSERT INTO t3 VALUES (1,’1’),(2,’2’);
1 No Yes Semantic No No Latent

SELECT DISTINCT t3.b FROM t3,t2,t1 WHERE t3.a=t1.b; †

CREATE TABLE t2 LIKE t1; ‡
2 No No Error No Yes Non-latent

INSERT INTO t2 SELECT * FROM t1; ‡

TRUNCATE TABLE t1;
35 Yes No Semantic No No Latent

SELECT * FROM t2;

INSERT INTO t1 (a) VALUES (10),(11),(12);
2 No Yes Semantic No No Latent

SELECT a FROM t1;

INSERT INTO t2 VALUES (2,0);
3 Yes No Semantic No No Latent

SELECT STRAIGHT JOIN* FROM t1, t2 FORCE (PRIMARY); †

DROP TABLE t1;
238 No No Semantic Yes Yes Non-latent

SHOW TABLE STATUS LIKE ’t1’;

INSERT INTO t1 VALUES (1,1,”00:06:15”); †

1 No Yes Semantic No No Latent
SELECT a,SEC TO TIME(SUM(t)) FROM t1 GROUP a,b; †

CREATE TABLE t2 SELECT * FROM t1;
17 No No Semantic No No Non-latent

DROP TABLE t2;

INSERT INTO t1 (a) VALUES (REPEAT(’a’, 20));
3 No Yes Semantic No No Latent

SELECT LENGTH(a) FROM t1;

INSERT INTO t1 VALUES (80,’pendant’);
2 No Yes Semantic No No Latent

SELECT COUNT(*) FROM t1 WHERE LIKE ’%NDAN%’; †

OPTIMIZE TABLE t1;
25 Yes No Semantic No Yes Latent

DROP TABLE t1;

Table 2. Properties of the triggered concurrency bugs that PIKE found. The table presents the number of concurrent executions

that were flagged as positive for each of the inputs (EXs). Additionally it indicates whether the output of the concurrent

executionsmatched the output of the sequential executions (OA andOB) and similarly for the state of the sequential executions

(SA and SB). (Requests marked with † have been simplified for presentation purposes, the two identical pairs of requests

marked with ‡ operate on distinct states)

Request 1 CREATE TABLE t2 LIKE t1;

Request 2 INSERT INTO t2 SELECT * FROM t1;

Table 4. Requests responsible for triggering the sample er-

ror bug

5.2.3 Latent bugs

Surprisingly, PIKE was able to find eight different situations

that triggered latent concurrency bugs. All of the latent bugs

we found had the external effect of providing wrong results

in subtle ways and involved the query cache structure. As we

will describe in Section 5.3, we also found situations where

the binary log appeared to contain an incorrect state, but we

were not confident that these represented bugs (i.e., that the

incorrect state would lead to incorrect behavior visible by

users) and so we did not flag them as such.

As an example, one of the cases where a latent concur-

rency bug is triggered occurs when the requests in Table 5

are executed concurrently. The simplified source code rele-

vant to this example is shown in Figure 5. While executing

the SELECT request, the first thread opens the table, locks

it, and in the process makes a copy for itself of the state

Thread 1 Thread 2

int create_table_like(scr,dst)

{

...

/*Copies the definition file */

my_copy(scr,dst,...);

/*Creates the index and

data file*/

create_table(dst_path,...);

...

}

int mysql_insert(data,table)

{

…

/*Successfully opens

definition file*/

open_and_lock_tables(table);

write_to_table(data,table);

...

}

Figure 4. Sample error bug

of the table. The logic of the application allows the second

thread to then concurrently insert entries at the logical end of

the table. However, when the first thread resumes execution

it will rely on its local (and now stale) copy of the state of

that table to fetch data. In the process, the first thread will

skip the newly inserted entry and provide the old results to

the client without immediately violating the semantics of the

Request 1 SELECT a FROM t1;

Request 2 INSERT INTO t1 (a) VALUES (10), (11), (12);

Table 5. Requests responsible for triggering the sample la-

tent bug

Thread 1 Thread 2

int select(sql, table_name)

{

…

/*Gets a local table copy*/

table = open_and_lock_table();

lock = READ;

/*The local file length doesn’t

change*/

result = fetch_data(table,

table->data_file_length);

/*Writes stale data to query

cache*/

query_cache.store(result);

...

}

int mysql_insert(data, table)

{

...

/*Upgrades lock to

concurrent insert*/

write_to_table(data, table);

invalidate_query_cache();

...

}

Figure 5. Sample latent bug

application (i.e., the returned value would be consistent with

the first thread having executed before the second thread).

In this bug, the actual semantic violation arises from the fact

that the first thread also stores the stale data which the second

thread does not invalidate in the query cache. This means

that a third thread could, at a later point in time, read the

stale data from the query cache and expose it to the clients,

violating the expected semantics of the application.

We saw the same pattern of latent bugs causing stale

entries to be left in the query cache in other test cases, and

we again stress that it is likely that some of the situations

that triggered latent concurrency bugs could be triggering

what could be considered the same bug. However, given

the complexity of the application logic to both invalidate

the query cache and to prevent certain specific concurrent

requests from inserting simultaneously entries into the query

cache, it is hard to state whether we are dealing with the

same bugs objectively. Nevertheless it should be noted that

the various cases that triggered latent bugs can be caused by

very distinct types of requests, as can be seen in Table 2.

5.3 False positives

After the initial tests, approximately one third of the inputs

generated potential false positives. Since this high fraction

of false positives would make the analysis of the results im-

practical, we had to insert two filters to reduce the number

of false positives which proved to be very effective. These

filters allow testers to avoid false positives when the applica-

tion deliberately violates linearizability.

The first filter we inserted was related to the table cache.

Concurrent requests that try to open the same table concur-

rently will create distinct but identical entries in the table

cache, whereas the same requests executing in sequence can

reuse each other’s entry. Therefore we inserted a filter that

stated that the entries in the table cache for the linearized

execution need to be contained in the concurrent one.

The second filter was related to the query cache, and the

fact that MySQL sometimes conservatively decides not to

cache entries in the query cache when two concurrent re-

quests are executed, one of them is a query, and the other

would invalidate the entry for that query in the query cache.

In this case our filter says that the query cache entries in the

concurrent execution must be contained in the set of entries

in the linearization. Note that these may be considered per-

formance bugs (or, at least, missed opportunities for a perfor-

mance optimization), and this shows that PIKE might also be

useful for analyzing and improving performance issues that

may affect the application.

After inserting these two filters, the total number of false

positives reported was 27. Of these, 22 are related to unex-

pected interactions between the framework and the applica-

tion. In particular, some requests took a longer amount of

time to complete, which in turn caused an execution time-

out in our framework to expire. In other cases false positives

were caused by non-determinism in the reply that we had

not caught (e.g., calls to the current time or random num-

ber generation). A third type of false positives was caused

by timeouts in the NFS volume in which our results were

written, which affected the output. All of these types of false

positives were reasonably easy for us to diagnose.

The remaining five false positives involved a more careful

analysis. These were caused by binary log entries being re-

ordered (i.e., MySQL would change some internal structures

in one order and the binary log in another order). This turned

out to be acceptable under some circumstances. Typically

this happened with pairs of concurrent requests in which one

of the requests executed an optimization or maintenance task

(e.g., OPTIMIZE and FLUSH requests). The fact that these

operations affect the performance but not the results implies

that, when the binary log state is required (normally when a

replica recovers from a fault), repeating these entries in the

wrong order will not affect the output of the operations, but

only the moment in the sequence of re-execution of these op-

erations when the performance optimizations are performed.

6. Related Work

The goal of program verification is to guarantee that an im-

plementation complies with its specification. Assuming the

specification is correct (i.e., it specifies what the program-

mer intended), a verified program is guaranteed to be bug

free. Model checking [Musuvathi 2004] is a promising tech-

nique that follows this approach by exhaustively exploring

all possible states of the program. However, currently model

checking has difficulty scaling to large programs.

Bug finding tools, on the other hand, although they do

not guarantee that all bugs are found, are more scalable. Bug

finding tools can be divided into static analysis and dynamic

analysis tools depending, respectively, on whether they sim-

ply analyze the source code or actually execute the code.

Static tools such as RacerX [Engler 2003] and others [Boy-

apati 2002, Naik 2006] have the advantage of not being lim-

ited in their analysis to the execution path determined by the

input. On the other hand, dynamic analysis tools, since they

actually run the code, have the advantage of having more in-

formation about the context of the execution and therefore

can potentially achieve a higher accuracy (i.e., fewer false

positives). PIKE is an example of a dynamic analysis tool, as

are FastTrack [Flanagan 2009], LiteRace [Marino 2009] and

Eraser [Savage 1997].

For testing to be successful, developers need to have good

test cases. But given that manually generating tests is, in gen-

eral, a tedious and difficult task, researchers have tried to au-

tomate this process by developing tools and methodologies

that automatically generate test cases [Cadar 2008a;b, Gode-

froid 2005]. There have also been attempts to generate test

cases specifically for databases [Microsoft, Mishra 2008].

However, automatic tools for test generation typically have

difficulty scaling to large and complex applications.

Given the specifics of concurrency bugs, researchers have

developed specific tools for handling this special class of

bugs. One class of tools attempts to help programmers ex-

plore different thread interleavings. A different class of tools

which also also specifically target concurrency bugs are data

race detectors. We compare to each of these two classes in

turn.

Typically, when a multi-threaded application runs na-

tively, the operating system will tend to choose similar

thread interleavings for different executions. To make test-

ing more efficient, it is important to test a more diverse set of

interleavings. One way of achieving this is by stress testing

the application, possibly in combination with noise genera-

tors [Ben-Asher 2006]. A more sophisticated approach is to

use custom schedulers that try to avoid redundant thread in-

terleavings, prioritize some thread interleavings over others,

and allow the programmer to replay a thread interleaving

once it finds one that interests him (e.g., a thread interleav-

ing that triggers bugs). Examples of tools that explore differ-

ent thread interleavings in a smarter way are ConTest [Ey-

tani 2007], CHESS [Musuvathi 2008] and PCT [Burckhardt

2010b]. However, these tools still rely on external mecha-

nisms (e.g., assertion violations) to detect the occurrence of

concurrency bugs. PIKE makes use of this approach, in par-

ticular the random scheduler algorithm of PCT, to explore

different thread interleavings in a controlled way, but is com-

plementary to them in that it enables new ways of finding

bugs that do not rely on capturing exceptions or traditional

assertion violations.

Some frameworks allow programmers to specify complex

assertions for multi-threaded applications [Burnim 2009].

These typically enable programmers to specify invariants

and to specify which parts of the code the invariants apply to.

PIKE instead proposes an implicit correctness condition that

relies on comparing the application behavior to the behavior

during serializable executions.

A second class of tools are the data race detectors which

can be roughly divided into two sub-classes depending on

which algorithm they use. The first sub-class of data race

detectors rely on the lockset algorithm [Savage 1997] to

infer whether the programmer protected all accesses to a

specific shared variable with a fixed lock. The second sub-

class of data race detectors rely on the happens-before algo-

rithm [Flanagan 2009, Marino 2009]. Recently, Erickson et

al. have proposed a different data race detector that is not

based on either of these algorithms, but is instead based on

sampling and the use of breakpoints [Erickson 2010].

Like PIKE, data race detectors are also tools that can be

useful for detecting concurrency bugs, however they have

distinct features. First, these tools detect data races instead of

directly detecting concurrency bugs. Since programs often

contain benign data races, simply detecting data races eas-

ily leads to false positives. Furthermore the absence of data

races is not a guarantee of correct synchronization [Artho

2003, Lu 2006], and hence false negatives can result. An-

other difference is that race detectors typically operate at

the lower-level of individual memory accesses. In contrast,

PIKE analyzes the actual output of the application as well as

a high-level digest of the state, potentially uncovering bugs

that are not triggered by low-level data races and also facili-

tating the process of inspecting the results.

In order to reduce the number of false positives in data

race finding tools and thus reduce the burden on testers,

researchers have developed heuristics. By using heuristics

some systems attempt to identify scenarios that frequently

lead to false positives. DataCollider [Erickson 2010], for ex-

ample, tries to detect benign data races caused by counters

and accesses to different bits of the same variable. One ap-

proach is to use heuristics that rely on looking at the in-

structions at or near the problematic accesses or on manually

whitelisting variables. The disadvantage of this approach is

that it also increases the risk of missing erroneous data races.

Another interesting approach to distinguish erroneous data

races from benign data races relies on replaying the exe-

cution [Narayanasamy 2007]. It relies on trying to trigger

the opposite outcome of the data race and then comparing

the low-level results obtained with both data race outcomes.

This approach, however, still aims at finding low-level data

races.

There have been prior approaches for checking the lin-

earizability of code to improve robustness [Burckhardt

2010a, Vafeiadis 2010, Vechev 2009, Xu 2005]. We differ

from these approaches in two ways. First, they typically ig-

nore the internal state of the application, which is important

for the detection of latent bugs. Second, they check for the

atomicity of smaller sections of code such as code blocks or

library calls, which poses fewer challenges than testing the

linearizability of large server applications.

AVIO [Lu 2006] detects atomicity violations at the level

of individualmemory accesses. AVIO achieves this by learn-

ing from a large set of runs (which are assumed to be cor-

rect) the valid memory access patterns (e.g., when are two

consecutive accesses from a thread allowed to be interleaved

by an access from another thread). AVIO shares our goal of

attempting to find concurrency bugs without relying on find-

ing data races, but in contrast AVIO works at a low-level and

relies on training.

Finally, an entirely different approach for dealing with

concurrency bugs is by using tools that prevent or make

it less likely for programmers to make mistakes. One such

approach is to use special programming languages [Vaziri

2006], while another is to use special hardware or frame-

works such as transactional memory [Herlihy 1993, Shavit

1995].

7. Conclusion

This paper presented PIKE, a tool for testing concurrent ap-

plications. PIKE is able to find two particularly challenging

types of bugs: semantic bugs and latent bugs. Semantic bugs

generate subtle deviations from the expected behavior of the

application, while latent bugs silently corrupt internal data

structures, and manifest themselves to clients possibly long

after the requests that triggered the bug are executed. PIKE

detects these two types of bugs by testing if the application

obeys linearizable semantics, both in terms of its outputs and

its internal state. Our experience in applying PIKE to find

concurrency bugs in MySQL was a positive one. We found

that it was simple to write the necessary annotations to cap-

ture an abstract view of the service state, and that it was easy

to make the number of false positives tractable by writing

simple filtering rules for common violations of linearizabil-

ity at the level of the application state. More importantly, we

were able to find several semantic and latent concurrency

bugs in a stable version of MySQL. Currently, we are apply-

ing PIKE to the current development release, and we are an-

alyzing the potential crash and deadlock bugs we have found

with our current test suite.

Acknowledgments

We are grateful for the feedback provided by the anonymous

reviewers and for the help provided by our shepherd, Leonid

Ryzhyk. Pedro Fonseca was supported by a grant provided

by FCT.

References

[Artho 2003] Cyrille Artho, Klaus Havelund, and Armin Biere.

High-level data races. Software Testing, Verification and Reli-

ability, 13(4):207–227, 2003.

[Ben-Asher 2006] Yosi Ben-Asher, Yaniv Eytani, Eitan Farchi,

and Shmuel Ur. Producing scheduling that causes concurrent

programs to fail. In Proc. of Parallel and Distributed Systems:

Testing and Debugging (PADTAD), pages 37–40, 2006.

[Bonomi 2006] Flavio Bonomi, Michael Mitzenmacher, Rina Pan-

igrahy, Sushil Singh, and George Varghese. An improved con-

struction for counting bloom filters. Lecture Notes in Computer

Science, 4168:684–695, 2006.

[Boyapati 2002] Chandrasekhar Boyapati, Robert Lee, and Martin

Rinard. Ownership types for safe programming: Preventing data

races and deadlocks. In Proc. of Object-Oriented Programming,

Systems, Languages, and Applications (OOPSLA), pages 211–

230, 2002.

[Burckhardt 2010a] Sebastian Burckhardt, Chris Dern, Madanlal

Musuvathi, and Roy Tan. Line-up: A complete and automatic

linearizability checker. SIGPLAN Not., 45(6):330–340, 2010.

ISSN 0362-1340.

[Burckhardt 2010b] Sebastian Burckhardt, Pravesh Kothari,

Madanlal Musuvathi, and Santosh Nagarakatte. A random-

ized scheduler with probabilistic guarantees of finding bugs.

SIGARCH Comput. Archit. News, 38(1):167–178, 2010. ISSN

0163-5964.

[Burnim 2009] Jacob Burnim and Koushik Sen. Asserting and

checking determinism for multithreaded programs. In Proc. of

the European Software Engineering Conference and the Sympo-

sium on the Foundations of Software Engineering (ESEC/FSE),

pages 3–12, 2009.

[Cadar 2008a] Cristian Cadar, Daniel Dunbar, and Dawson Engler.

KLEE: Unassisted and automatic generation of high-coverage

tests for complex systems programs. In Proc. of Operating Sys-

tem Design and Implementation (OSDI), pages 209–224, 2008.

[Cadar 2008b] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski,

David L. Dill, and Dawson R. Engler. EXE: Automatically

generating inputs of death. ACM Trans. Inf. Syst. Secur., 12(2):

1–38, 2008. ISSN 1094-9224.

[Engler 2003] Dawson Engler and Ken Ashcraft. RacerX: Effec-

tive, static detection of race conditions and deadlocks. SIGOPS

Operating Systems Review, 37(5):237–252, 2003. ISSN 0163-

5980.

[Erickson 2010] John Erickson, Madanlal Musuvathi, Sebastian

Burckhardt, and Kirk Olynyk. Effective data-race detection for

the kernel. In Proc. of Operating System Design and Implemen-

tation (OSDI), pages 1–16, 2010.

[Eytani 2007] Yaniv Eytani, Klaus Havelund, Scott D. Stoller, and

Shmuel Ur. Toward a framework and benchmark for testing

tools for multi-threaded programs. Conc. & Comp.: Practice

& Experience, pages 267–279, 2007.

[Flanagan 2009] Cormac Flanagan and Stephen N. Freund. Fast-

Track: Efficient and precise dynamic race detection. SIGPLAN

Not., 44(6):121–133, 2009. ISSN 0362-1340.

[Fonseca 2010] Pedro Fonseca, Cheng Li, Vishal Singhal, and Ro-

drigo Rodrigues. A study of the internal and external effects of

concurrency bugs. In Proc. of International Conference on De-

pendable Systems and Networks (DSN), pages 221–230, 2010.

[Godefroid 2005] Patrice Godefroid, Nils Klarlund, and Koushik

Sen. DART: Directed automated random testing. SIGPLANNot.,

40(6):213–223, 2005. ISSN 0362-1340.

[Herlihy 1993] Maurice Herlihy and J. Eliot B. Moss. Transac-

tional memory: Architectural support for lock-free data struc-

tures. SIGARCH Computer Architecture News, 21(2):289–300,

1993.

[Herlihy 1990] Maurice P. Herlihy and Jeannette M. Wing. Lin-

earizability: A correctness condition for concurrent objects.

ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990. ISSN

0164-0925.

[Lu 2008] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan

Zhou. Learning from mistakes: A comprehensive study on real

world concurrency bug characteristics. SIGARCH Computer

Architecture News, 36(1):329–339, 2008. ISSN 0163-5964.

[Lu 2006] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou.

AVIO: detecting atomicity violations via access interleaving in-

variants. In Proc. of International Conference on Architectural

Support for Programming Languages and Operating Systems

(ASPLOS), pages 37–48, 2006.

[Marino 2009] Daniel Marino, Madanlal Musuvathi, and Satish

Narayanasamy. LiteRace: Effective sampling for lightweight

data-race detection. In Proc. of Programming Languages Design

and Implementation (PLDI), pages 134–143, 2009.

[Microsoft] Microsoft. Generating test data for databases by us-

ing data generators. http://msdn.microsoft.com/en-us/

library/dd193262.aspx.

[Mishra 2008] Chaitanya Mishra, Nick Koudas, and Calisto

Zuzarte. Generating targeted queries for database testing. In

Proc. of International Conference onManagement of Data (SIG-

MOD), pages 499–510, 2008.

[Musuvathi 2004] Madanlal Musuvathi and Dawson R. Engler.

Model checking large network protocol implementations. In

Proc. of Networked Systems Design and Implementation (NSDI),

pages 155–168, 2004.

[Musuvathi 2008] Madanlal Musuvathi, Shaz Qadeer, Thomas

Ball, Gérard Basler, Piramanayagam A. Nainar, and Iulian

Neamtiu. Finding and reproducing heisenbugs in concurrent

programs. In Proc. of Operating System Design and Implemen-

tation (OSDI), pages 267–280, 2008.

[Naik 2006] Mayur Naik, Alex Aiken, and John Whaley. Effec-

tive static race detection for java. In Proc. of Programming

Languages Design and Implementation (PLDI), pages 308–319,

2006.

[Naik 2009] Mayur Naik, Chang-Seo Park, Koushik Sen, and David

Gay. Effective static deadlock detection. In Proc. of Interna-

tional Conference on Software Engineering (ICSE), pages 386–

396, 2009.

[Narayanasamy 2007] Satish Narayanasamy, Zhenghao Wang, Jor-

dan Tigani, Andrew Edwards, and Brad Calder. Automatically

classifying benign and harmful data races using replay analysis.

In Proc. of Programming Languages Design and Implementa-

tion (PLDI), pages 22–31, 2007.

[Oracle a] Oracle. MySQL :: Market share. http://www.mysql.

com/why-mysql/marketshare/.

[Oracle b] Oracle. Storage engine poll. http://dev.mysql.com/

doc/refman/5.0/en/storage-engines.html.

[Oracle c] Oracle. The MyISAM storage engine.

http://dev.mysql.com/doc/refman/5.0/en/

myisam-storage-engine.html.

[Sahoo 2009] Swarup K Sahoo, John Criswell, and Vikram S.

Adve. An empirical study of reported bugs in server software

with implications for automated bug diagnosis. Tech. Report

2142/13697, University of Illinois, 2009.

[Savage 1997] Stefan Savage, Michael Burrows, Greg Nelson,

Patrick Sobalvarro, and Thomas Anderson. Eraser: A dynamic

data race detector for multi-threaded programs. SIGOPS Oper.

Syst. Rev., 31(5):27–37, 1997. ISSN 0163-5980.

[Shavit 1995] Nir Shavit and Dan Touitou. Software transactional

memory. In Proc. of Symposium on Principles of Distributed

Computing (PODC), pages 204–213, 1995.

[Vafeiadis 2010] Viktor Vafeiadis. Automatically proving lineariz-

ability. In Proc. of International Conference on Computer Aided

Verification (CAV), pages 450–464, 2010.

[Vaziri 2006] Mandana Vaziri, Frank Tip, and Julian Dolby. As-

sociating synchronization constraints with data in an object-

oriented language. In Proc. on Principles of Programming Lan-

guages (POPL), pages 334–345, 2006.

[Vechev 2009] Martin Vechev, Eran Yahav, and Greta Yorsh. Ex-

perience with model checking linearizability. In Proc. on SPIN

Workshop on Model Checking Software (SPIN), pages 261–278,

2009.

[Xiong 2010] Weiwei Xiong, Soyeon Park, Jiaqi Zhang, Yuanyuan

Zhou, and Zhiqiang Ma. Ad hoc synchronization considered

harmful. In Proc. of Operating System Design and Implementa-

tion (OSDI), pages 1–8, 2010.

[Xu 2005] Min Xu, Rastislav Bodı́k, and Mark D. Hill. A serial-

izability violation detector for shared-memory server programs.

SIGPLAN Not., 40(6):1–14, 2005. ISSN 0362-1340.

