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Abstract
Traditional agreement-based Byzantine fault-tolerant (BFT)
systems process all requests on all replicas to ensure consis-
tency. In addition to the overhead for BFT protocol and state-
machine replication, this practice degrades performance and
prevents throughput scalability. In this paper, we propose an
extension to existing BFT architectures that increases per-
formance for the default number of replicas by optimizing
the resource utilization of their execution stages.

Our approach executes a request on only a selected subset
of replicas, using a selector component co-located with each
replica. As this leads to divergent replica states, a selector
on-demand updates outdated objects on the local replica
prior to processing a request. Our evaluation shows that with
each replica executing only a part of all requests, the overall
performance of a Byzantine fault-tolerant NFS can be almost
doubled; our prototype even outperforms unreplicated NFS.

Categories and Subject Descriptors D.4.7 [Organization
and Design]: Distributed Systems; C.4 [Performance of Sys-
tems]: Fault Tolerance

General Terms Design, Performance, Reliability

Keywords Byzantine Failures; Performance

1. Introduction
Today’s information society heavily depends on computer-
provided services. Byzantine fault tolerance (BFT) based
on replicated state machines is a general approach to make
these services tolerate a wide spectrum of faults, including
hardware failures, software crashes, and malicious attacks.
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In general, the architecture of an agreement-based BFT
system can be divided into two stages [Yin 2003]: agree-
ment and execution. The agreement stage is responsible for
imposing a total order on client requests; the execution stage
processes the requests on all replicas, preserving the order
determined by the agreement stage to ensure consistency.

Up to now, a number of protocol optimizations and ar-
chitecture variants [Castro 1999, Correia 2004, Hendricks
2007, Kotla 2007; 2004, Wester 2009] have been proposed
to improve the performance of both stages. In all these cases,
the performance increase achieved is based on minimizing
certain parts of the overhead introduced by BFT replica-
tion (e. g., request ordering [Correia 2004, Kotla 2007] or
state-machine replication [Kotla 2004]). However, as all
these systems ensure replica consistency by executing all re-
quests on all replicas, the maximum throughput achievable
for the fault-tolerant service is bounded by the throughput of
a single replica; that is, the corresponding non–fault-tolerant
unreplicated service.

In this paper, we present an extension to existing BFT
state-machine–replication architectures that increases the
upper throughput bound of an agreement-based BFT ser-
vice (in the absence of faults) beyond the throughput of the
corresponding unreplicated service. Our evaluation shows
that our extension also reduces the response time under load.
The approach exploits the fact that for systems tolerating f
faults, f + 1 identical replies provided by different replicas
prove a reply correct. In accordance with other authors [Hen-
dricks 2007, Kotla 2007, Wester 2009, Wood 2011], we as-
sume faults to be rare. Therefore, we execute each request on
only a subset of f +1 replicas during normal-case operation.
In case of a fault, additional replicas process the request.

The subset of replicas to execute a request is selected for
each request individually, based on the service-state vari-
ables accessed by the request. In particular, we divide the
service state into objects and assign each object to f + 1
replicas. With different objects being assigned to different
subsets of replicas, request execution is distributed across
all replicas. Assuming uniform object distribution and uni-
form object access, each replica only executes f+1

n of all re-
quests, with n being the number of replicas. As a result, the



upper throughput bound T of the overall system increases
to T ′ = n

f+1T . For a standard agreement-based BFT ar-
chitecture with 3f + 1 execution replicas and f = 1, this
doubles the throughput bound. Our evaluation of a Byzan-
tine fault-tolerant version of NFS shows that for medium
and high workloads the load reduction at the execution stage
outweighs the overhead introduced by request ordering and
state-machine replication. As a result, the BFT service out-
performs its non–fault-tolerant unreplicated equivalent.

Replica states in our system are not completely identical
at all times but may differ across replicas, depending on the
requests a replica has executed. However, instances of the
same object are consistent across all f + 1 assigned repli-
cas as they all process requests accessing the object in the
same order. As clients may send requests accessing objects
assigned to different replicas, a selector module co-located
with every service replica provides on-demand replica con-
sistency (ODRC). The selector ensures that all objects pos-
sibly read or modified by a request are consistent with the
current service state by the time the request is executed; ob-
jects outside the scope of a request are unaffected and may
remain outdated.

Applying ODRC reduces the costs of keeping replicas
consistent to the extent actually needed in order to provide
consistent replies to client requests. In consequence, this
approach improves resource utilization of replica execution
stages, as replicas for the most part only execute requests
that produce replies the client really needs to make progress.
While other systems [Distler 2011, Wood 2011] have been
proposed that minimize the number of replicas by utilizing
the idea of providing only f + 1 replies in the absence of
faults, the main goal of ODRC is to increase performance
for the default number of replicas (i. e., 3f + 1 in traditional
BFT systems, such as PBFT [Castro 1999]).

We show that ODRC can be integrated into existing
agreement-based BFT state-machine–replication architec-
tures by introducing a single module between the agreement
stage and the execution stage of a replica. Apart from that,
our approach solely relies on existing mechanisms. In par-
ticular, this paper makes the following contributions:

• It presents an extension to existing agreement-based BFT
state-machine–replication architectures that improves
performance for the default number of replicas using
ODRC (Sections 3 and 4).
• It outlines service integration for ODRC for a Byzantine

fault-tolerant NFS service (Section 6) and a BFT variant
of ZooKeeper (Section 7).
• It evaluates the impact of ODRC in the absence as well

as the presence of faults (Sections 6 and 7).

In addition, Section 2 presents our system model. Section 5
describes important optimizations. Section 8 discusses the
implications of applying on-demand replica consistency.
Section 9 presents related work, and Section 10 concludes.

2. System Model and Assumptions
This section presents our system model and defines the BFT
system properties required for ODRC.

2.1 General System Model
We assume the standard system model used for BFT state-
machine replication [Castro 1999, Kotla 2007; 2004, Ro-
drigues 2001, Yin 2003] that comprises the possibility of
replicas and clients behaving arbitrarily. Nodes may oper-
ate at different speeds. They are linked by a network that
may fail to deliver messages, corrupt and/or delay them, or
deliver them out of order. Our system is safe under this asyn-
chronous model. Liveness is ensured when the bounded fair
links [Yin 2003] assumption holds. Nodes authenticate the
messages they send to other nodes; we assume that an ad-
versary cannot break cryptographic techniques.

Replicas implement a state machine [Schneider 1990]
to ensure consistency and deterministic replies to client re-
quests; the state machine consists of a set of variables S en-
coding its state and a set of commands C operating on them.
The execution of a command leads to an arbitrary number of
state variables being read and/or modified and an output be-
ing provided to the environment. Our approach requires de-
terministic state machines: for the same sequence of inputs
every non-faulty replica must produce the same sequence of
outputs. Thereby, the replicas have to be in an identical state
between processing the same two requests. The use of deter-
ministic state machines guarantees that all non-faulty repli-
cas executing a client request answer with identical replies.

We divide the state S into objects; an object O comprises
a set of up to |S| state variables (0 < |O| ≤ |S|), sizes of
different objects may vary. Altogether, objects cover the
whole state (

⋃
Oi = S). For simplicity, we assume objects

to be disjoint (Oi ∩Oj = ∅).

2.2 Architectural Properties
We assume that the BFT system architecture separates agree-
ment from execution [Yin 2003] (SEP); our approach does
not require agreement stage and execution stage to be lo-
cated on different hosts. In particular, the following BFT sys-
tems1 are suitable to integrate ODRC: PBFT [Castro 1999],
BASE [Rodrigues 2001], CBASE [Kotla 2004], SEP [Yin
2003], TTCB [Correia 2004]), and VM-FIT [Reiser 2007].
Note that this list is not intended to be exhaustive.

To emphasize the generality of our approach, we use an
abstract view of a BFT system as a composition of repli-
cas (consisting of agreement stage and execution stage) and
voters (responsible for identifying correct replies); voting is
usually performed by the client. Replicas and voters may
both be subject to Byzantine faults. The properties discussed
in the following refer to non-faulty replicas and voters.

1 Some of the systems listed do not explicitly separate agreement from
execution. However, their basic concepts allow a separation of agreement
stage and execution stage to the extent required for ODRC.



2.2.1 Replicas
A non-faulty replica must provide the following properties
in order to be suitable for applying ODRC:

R1 Total Request Ordering: The agreement stage inputs
an arbitrary sequence of client requests (that may differ
between replicas) and outputs a stable totally-ordered
sequence of requests (identical across all replicas).

R2 Request Execution: Each replica in the execution
stage inputs the totally-ordered sequence of requests
and outputs a set of replies that is identical to the out-
put of all other non-faulty replicas.

R3 Reply Cache: Each replica caches replies in order to
provide them to voters on demand.

R1 and R2 are standard techniques to ensure replica con-
sistency. Note that we make no assumptions on how the to-
tal ordering of requests (R1) is achieved; that is, we treat
the agreement stage as a black box. Therefore, ODRC can
be implemented in systems using the standard BFT proto-
col [Castro 1999, Kotla 2004, Rodrigues 2001, Yin 2003],
as well as in systems relying on trusted components [Chun
2007, Correia 2004, Reiser 2007].

In general, BFT systems provide the reply cache (R3)
to be able to resend replies in case of network problems in
order to guarantee liveness. Replicas usually store only the
last reply sent to each client to limit cache size. In this paper,
we assume that the reply cache is hosted by the agreement
stage [Yin 2003].

2.2.2 Voters
A non-faulty voter must provide the following properties in
order to be suitable for applying ODRC:

V1 Reply Verification: The result to a client request is
accepted as soon as the voter receives f + 1 identical
replies (or reply digests) from different replicas.

V2 Incomplete-Voting Notification: All non-faulty repli-
cas eventually learn about an incomplete voting (i. e.,
the voter is not able to collect f + 1 identical replies
within a certain period of time).

V 1 is a standard property of BFT systems as f + 1 identi-
cal replies are the proof for correctness in the presence of at
most f faulty replicas. V 2 covers an essential mechanism to
guarantee liveness. In systems using the standard BFT pro-
tocol [Castro 1999, Kotla 2007; 2004, Rodrigues 2001, Yin
2003], for example, it protects clients against a faulty pri-
mary not forwarding requests. In particular, on the expiration
of a voting timeout, a client multicasts the affected request
to all replicas, potentially triggering a view change.

2.3 Service-State Checkpointing
ODRC requires a BFT system to provide a mechanism to
checkpoint the service state as well as a mechanism to re-
store the service state based on a checkpoint. In particular,

we assume the execution stage to provide an object check-
point function that creates a snapshot of a state object. We
also demand the execution stage to provide an object update
function that updates an object based on a given checkpoint.

As most BFT systems [Castro 1999, Kotla 2007; 2004,
Reiser 2007, Rodrigues 2001, Yin 2003] rely on periodic
checkpoints to correct faulty replicas as well as to bring
slow replicas up to date, both functions may be implemented
using existing mechanisms. For example, all BASE-related
systems [Kotla 2004, Rodrigues 2001, Yin 2003] implement
a copy-on-write approach that only snapshots state objects
modified since the last checkpoint. Furthermore, these sys-
tems also provide a function to selectively update state ob-
jects. Therefore, object checkpoint and object update func-
tions that satisfy our requirements can be implemented with-
out major implementation changes.

2.4 Request Analysis Function
We require requests to carry information about which ob-
jects they might read or modify during execution. To extract
this information, we assume the existence of an application-
specific request analysis function (RAF) that inputs a request
req and outputs a set of objects:

Set<Object> RAF (Request req)

For each request req, this function determines the maxi-
mal set of objects that might be accessed during execution;
we assume each request to access at least one object. Note
that the function can be implemented conservatively (i. e., it
may return more objects than actually accessed) for services
where a detailed analysis is too expensive. For the remainder
of this paper, we state that a request accesses an object when
the object is included in the set of objects returned by the re-
quest analysis function, independent of whether the request
actually reads or modifies the object during execution.

In general, it may not be possible to specify a request-
analysis function for arbitrary services as requests do not
necessarily contain enough information to determine the
state objects they access. However, most replicated BFT
systems use similar functions to efficiently implement state-
machine replication. For example, systems derived from
BASE [Kotla 2004, Rodrigues 2001, Yin 2003] utilize in-
formation about state access of requests to determine state
changes; CBASE [Kotla 2004] executes requests in parallel
based, among other criteria, on the state objects they access.

3. Selective Request Execution
In this section, we present an extension to the common BFT
state-machine–replication architecture that implements se-
lective request execution. Instead of processing all requests
on all replicas, a request is executed on only a subset of repli-
cas, selected based on the objects accessed by the request.
As a result, selective request execution reduces the load on
a replica’s execution stage. In this section, we assume the
absence of faults; we drop this assumption in Section 4.



Request  Rsequence numberRequest: R
[accessed objects]

. .
 . 
   
   
   
   
   
. .
 . 

. .
 . 
   
   
   
   
   
. .
 . 

EXECUTIONAGREEMENT

R2
[O],R1

[O]R[O0],R[O2]

. . .                     . . .

R3
[O],R2

[O],R1
[O],R0

[O]R[O1],R[O0],R[O2],R[O3] Execution
Stagen‐1

O0 O2

Selectorn‐1

O1 O3Agreement
Stagen‐1

R3
[O],R0

[O]R[O1],R[O3]

Execution
Stage0

R3
[O],R2

[O],R1
[O],R0

[O]R[O1],R[O0],R[O2],R[O3]

. .
 . 
   
   
   
   
   
. .
 . 

n
execution
stages

n
selectors

n
agreement
stages

. . .  . . . 

Maintained
objects: Oi

Totally‐ordered
sequence of
requests

Agreement
Stage0

Selector0

Figure 1. Based on the objects to be accessed, selectors
selectively execute agreed requests on local replicas.

3.1 State Distribution
Selective request execution requires all replicas to host all
state objects. However, each replica is only responsible for
keeping an assigned subset of objects up to date. In partic-
ular, objects are distributed across the system so that each
object is assigned to f + 1 replicas; for the remainder of
this paper, we refer to an object assigned to a replica as a
maintained object. As a result, each object is maintained on
f + 1 replicas and unmaintained on all others. We assume
that a replica is able to determine its set of maintained ob-
jects based on a global assignment relation (e. g., for f = 1
and n = 4, a replica with ID r ∈ [0, n − 1] is assigned all
objects with IDs o being o mod 2 = r mod 2; see Figure 1).

3.2 Selector
To apply selective request execution, we introduce a selector
module between agreement stage and execution stage (see
Figure 1). Each replica comprises its own selector that man-
ages local request execution. Selectors of different replicas
do not interact with each other, but rely on the same deter-
ministic state machine (see Section 3.3) and operate on the
same input; that is, the totally-ordered sequence of requests
provided by the agreement stage (R1). As a result, all non-
faulty selectors behave in a consistent manner. The selector
provides the following lightweight interface:

void insert(Request req);
Request next_request();
void force_request(Request req);

Relying on the two functions insert and next request,
agreement stage and execution stage use the selector as a
producer/consumer queue. The agreement stage submits re-
quests to the selector by calling insert in the determined
order. Independently, the execution stage fetches the next
request to be executed by calling next request, which
blocks while there are no requests ready for processing.
Please refer to Section 4.2 for a discussion of the use of
force request during fault handling.

1 void insert(Request req) {
2 Set<Object> Oreq = RAF (req);
3 ack unmain(Oreq \Omain, req);
4 if (Oreq ∩Omain == ∅) {
5 Rstore.enqueue(req);
6 } else {
7 update objects(Oreq \Omain, req);
8 Rexec.enqueue(req);
9 } }

10
11 Request next request() {
12 return Rexec.dequeue();
13 }

Figure 2. Selector algorithm

3.3 Basic Algorithm
The main task of a selector is to determine whether to pro-
cess a request on its associated replica. For each call to
insert, the selector executes the algorithm shown in Fig-
ure 2 that relies on the following data structures:

• Omain the set of currently maintained objects.
• Rexec a FIFO queue containing all requests selected

for execution. The selector uses this queue to execute
requests by handing them over to the execution stage on
calls to next request (lines 11-12).
• Rstore a FIFO queue containing all requests not se-

lected for execution.

In general, a selector distinguishes between two categories
of requests: First, requests selected for execution on the lo-
cal replica are forwarded to the execution stage in the order
defined by the agreement stage. Second, requests that are not
selected for local execution are enqueued in Rstore preserv-
ing their relative order. This approach allows the selector of
a non-faulty replica to maintain the following invariant: At
any time, the selector is able to bring each object on its local
replica up to date. This is the case because either an object
already is up to date, as all requests accessing the object have
been executed on the local replica, or because the object sub-
sequently can be updated by processing the state-modifying
requests from Rstore that access the object.

When the agreement stage calls insert, the selector ex-
ecutes the request analysis function (see Section 2.4) to ex-
tract the set of objects Oreq the request req accesses during
execution (line 2). If Oreq only consists of unmaintained ob-
jects, the selector does not select req for execution (line 5).
However, if there is at least one maintained object in Oreq,
req is selected for execution on the local replica (line 8). For
the remainder of Section 3, we assume a request to access
only maintained objects. In Section 4, we drop this assump-
tion and also explain the function calls in lines 3 (see Sec-
tion 4.2.2) and 7 (see Section 4.1).



With every request accessing a maintained object being
processed (see Figure 1), local versions of maintained ob-
jects are always consistent with the current service state. As
we assume that each request accesses at least one state ob-
ject (see Section 2.4), the algorithm and our state distribu-
tion scheme (see Section 3.1) guarantee that, in the absence
of faults, each request is processed on at least f +1 replicas.
In consequence, enough replies are provided to the voter to
prove the result correct (V 1). In case of faults, replies from
additional replicas are needed to decide the vote, as further
discussed in Section 4.2.1.

3.4 Checkpointing and Garbage Collection
Retaining requests that have not been selected for local ex-
ecution in Rstore allows a selector to update each local un-
maintained object at any point in time. In order to limit the
size of Rstore, a selector basically uses the same mechanism
as [Yin 2003]. It relies on periodic checkpoints that become
stable as soon as f + 1 identical certificates from different
replicas are available. When all state changes caused by a re-
quest are part of stable checkpoints, a selector is able to dis-
card the request from Rstore. In contrast to [Yin 2003], our
approach involves object checkpoints covering only a single
state object, instead of full checkpoints covering the whole
replica state.

A selector i generates a checkpoint (using the object
checkpoint function, see Section 2.3) for an object o for ev-
ery kth execution of a request accessing o, with k being a
system-wide constant (e. g., 100); besides object data, the
checkpoint also includes digests of the replies to the k re-
quests that led to the checkpoint (see Section 4.2.1). Next,
the selector computes a digest d of the object checkpoint
and multicasts 〈CHECKPOINT , o, s, d〉i to all selectors;
s is the sequence number of the request that triggered the
checkpoint creation. The selector assembles f + 1 identical
checkpoint messages to a full object-checkpoint certificate
that represents the proof for checkpoint correctness.

When the selector completes an object-checkpoint cer-
tificate, it discards older checkpoints and checkpoint certifi-
cates for the corresponding (maintained or unmaintained)
object. A request with sequence number s is deleted from
Rstore as soon as checkpoint certificates (indicating se-
quence numbers of at least s) of all objects accessed by
the request are available.

Using every kth access to an object to decide when
to generate an object checkpoint guarantees that all non-
faulty replicas assigned to the same object create a consis-
tent checkpoint. As replicas execute all requests accessing
a maintained object, they all create the checkpoint after the
same request. Therefore, in the absence of faults, at least
f+1 checkpoint messages are available, enough to assemble
a full object-checkpoint certificate. In case of faults, check-
point messages from additional replicas assist in assembling
a full object-checkpoint certificate (see Section 4.2.2).

1void update objects(Set<Object> Oupdate, Request req) {
2 Queue<Request> Rselected = ∅;
3 for(int i = Rstore.get index latest(req); i ≥ 0; −−i) {
4 Request r = Rstore.get(i);
5 Set<Object> Or = RAF (r);
6 if(Or ∩Oupdate 6= ∅) {
7 Rselected.enqueue(r);
8 Oupdate = Oupdate ∪Or;
9 } }

10
11 for each Object o in Oupdate {
12 ObjectCheckpoint ocp = Cstore.get(o);
13 if(ocp has not already been applied) {
14 update object using ocp;
15 } }
16
17 for(int i = (Rselected.size() − 1); i ≥ 0; −−i) {
18 Request r = Rselected.get(i);
19 Rstore.delete(r);
20 Rexec.enqueue(r);
21} }

Figure 3. Algorithm for updating unmaintained objects.

4. On-Demand Replica Consistency
In this section, we drop the assumptions of all replicas being
non-faulty and of requests accessing only maintained ob-
jects. As an immediate result of the latter, a selector needs
to synchronize the state of its local replica with the cur-
rent service state before executing a request that accesses
unmaintained (and therefore possibly outdated) state ob-
jects. However, the selector does not perform a full state up-
date. Instead, the selector ensures on-demand replica con-
sistency (ODRC). ODRC is “on demand” in two dimen-
sions: Consistency is only ensured when a request to be ex-
ecuted actually demands it (time); furthermore, consistency
is only ensured for the objects actually accessed by the re-
quest (space). In this paper, we use ODRC as a general term
for applying selective request execution in conjunction with
on-demand replica consistency.

4.1 Handling Cross-Border Requests
As a selector omits requests accessing only unmaintained
objects, those objects may become outdated. Therefore,
the selector has to ensure consistency of unmaintained ob-
jects prior to executing a request that accesses both main-
tained and unmaintained objects (“cross-border request”).
The mechanism used by the selector to update unmain-
tained objects relies on a combination of object check-
points and additional request execution. To ensure consis-
tency of all objects accessed by a request, the selector calls
update objects (see Figure 2, line 7), which executes the
two-step algorithm of Figure 3; the algorithm assumes a
cache Cstore holding the latest stable object checkpoints.



1 void force request(Request req) {
2 if(req ∈ Rstore) {
3 Set<Object> Oreq = RAF (req);
4 update objects(Oreq \Omain, req);
5 Rexec.enqueue(req);
6 Rstore.delete(req);
7 } }

Figure 4. Fault-handling function

In the first step, the selector determines, which requests
to execute in order to update all unmaintained objects for
a request req. Potential candidates are all requests from
Rstore that up to now were not selected for execution but
contribute to updating the state of the unmaintained objects
accessed by req. Starting with the latest request in Rstore

whose sequence number is smaller than the sequence num-
ber of req, the following operations are repeated for each
request r in Rstore. First, the set of objects Or accessed
by r is composed using the request analysis function (line 5).
Second, if any object in Or is a member in the set of ob-
jects to update Oupdate, r contributes to bringing them up to
date and is therefore selected for execution (lines 6-7); fur-
thermore, Oupdate is updated adding all objects contained
in Or (line 8), as these objects also have to be consistent
when request r will be executed. Note that additional ob-
jects in Or only have to be updated to the extent required
by request r, they do not have to contain the current state
of the object. In summary, this algorithm step goes back in
time selecting all requests accessing objects to update. As
these requests may require additional objects to be consis-
tent, those objects are also updated to resemble their state at
this point in time.

In the second step, the selector actually restores the
replica state. First, it updates each unmaintained object in
Oupdate using the checkpoint from Cstore (lines 11-14).
Next, the selector forwards all requests selected in the first
step to the execution stage (lines 17-20); Rselected is thereby
traversed backwards to preserve request order.

Note that update objects is the function that actually
provides ODRC: when a request requires a set of objects
to be consistent, the selector ensures consistency of exactly
those objects, leaving other objects unaffected and possibly
outdated. Therefore, executing the request req will produce
the same output as if it were processed by a replica whose
state is completely up to date.

4.2 Handling Faulty and Slow Replicas
During normal-case operation, a request is executed on f +1
replicas as voters only need f +1 identical replies to prove a
response correct. However, in case of faulty or slow replicas,
a voter might not be provided with enough replies to reach a
decision. In this case, the voter sends an incomplete-voting
notification to all replicas (V 2).

1 void ack unmain(Set<Object> Ounmain, Request req) {
2 for each Object o in Ounmain {
3 if((++Taccess[o] % k) == 0) {
4 attach req to a timer for o;
5 start the timer;
6 }
7 } }

Figure 5. Checkpoint monitoring function

4.2.1 Handling Incomplete Reply Voting
On the reception of an incomplete-voting notification, the
agreement stage performs the standard fault-handling oper-
ations (e. g., a view change); in particular, the agreement
stage resends the cached reply (R3) to the voter. If no
reply is available for a request req, the agreement stage
forces the selector to select req for local execution using
force request (see Figure 4). If req has not yet been pro-
cessed (i. e., it is in Rstore; lines 2, 6), the selector treats req
like a cross-border request, updates unmaintained objects,
and selects req for execution (lines 4-5). As each non-faulty
replica eventually learns about an incomplete voting (V 2),
selectors of all non-faulty replicas will eventually select req
for execution, providing additional replies to decide the vote.

A replica may receive an incomplete-voting notification
for a request whose sequence number is smaller than the
sequence number of the latest stable checkpoint of an ac-
cessed object. In this case, the selector sends the correspond-
ing reply digest (which is included in the object checkpoint,
see Section 3.4) to the voter (omitted in Figure 4). As the
object checkpoint (and therefore the reply digest) is stable,
there is at least one non-faulty replica that has actually exe-
cuted the request and therefore resends the full reply on the
reception of the incomplete-voting notification. As a result,
other non-faulty replicas that have not executed the request
may only return a reply digest.

Note that the agreement stage copes with most of the
problems arising from faulty or slow replicas, hiding them
from the selector. Agreement stages of different replicas de-
cide independently whether to call force request, based
on their local reply cache. As voters continue request retrans-
missions while lacking f +1 identical replies, all non-faulty
replicas that have originally omitted the execution of the re-
quest will eventually provide additional replies.

4.2.2 Handling Incomplete Checkpoint Voting
Faulty or slow replicas may (temporarily) prevent non-faulty
replicas from assembling a full object-checkpoint certificate
by providing faulty or no checkpoints. In this case, the mech-
anism in Figure 5 forces other non-faulty replicas to provide
additional checkpoints when an object checkpoint does not
become stable within a certain period of time. The mecha-
nism relies on a table Taccess containing an access counter
for every unmaintained object and a set of timers.



The basic selector algorithm calls ack unmain for ev-
ery request req (see Figure 2, line 3); this function incre-
ments a counter in Taccess for each unmaintained object o
accessed by req (see Figure 5, lines 2-3). This way, a selec-
tor is able to determine the point in time at which the next
checkpoint for an unmaintained object is due. A resulting
counter value divisible by k indicates that all (non-faulty)
replicas maintaining o will checkpoint this object after hav-
ing executed req (see Section 3.4). In this case, the selector
may expect a checkpoint for o to become stable within a cer-
tain (application-dependent) period of time. To monitor this,
the selector attaches req to an object-specific timer and starts
the timer (lines 4-5). The timer is stopped when the selector
is able to assemble a full object-checkpoint certificate for o.

When the object timer expires, however, the selector calls
force request (see Section 4.2.1) for the request req. As
a result, req is executed on the local replica; prior to that,
the selector updates the unmaintained object o (see Figure 4,
line 4), as o is accessed by req. Furthermore, processing
req (i. e., the kth request accessing o since the last stable
object checkpoint) triggers the creation and distribution of
the next checkpoint for o. As all non-faulty replicas (that do
not maintain o) behave in the same manner, each selector
is eventually provided with enough additional object check-
points for o to assemble a full object-checkpoint certificate.

4.3 Safety and Liveness
Introducing a selector between agreement stage and execu-
tion stage creates an additional potential point of failure, as
a faulty selector may lead to a faulty replica, and vice versa.
However, as selector interaction (besides the exchange of ob-
ject checkpoints) is limited to the local replica (i. e., agree-
ment stage and execution stage), selectors cannot be com-
promised by other replicas. With our approach treating the
agreement stage as a black box, most mechanisms of the sur-
rounding architecture ensuring safety (e. g., committing re-
quests) and liveness (e. g., view changes) remain unaffected.

4.3.1 Safety
The safety properties of ODRC are primarily based on the
safety properties of the underlying agreement protocol. As
ODRC does not modify the agreement stage, correctness of
the agreement protocol is preserved. In particular, it is guar-
anteed that, in the presence of at most f faults, the totally-
ordered sequence of requests provided by the agreement
stage is identical on all non-faulty replicas (R1).

In traditional BFT systems, this sequence IA dictates the
order in which all non-faulty replicas execute all requests.
Applying ODRC, non-faulty replicas execute requests based
on a sequence IS that is provided by the selector. A correct
selector transforms IA into IS ensuring the following two
properties of IS : first, requests whose access sets intersect
in at least one object appear in IS in the same relative
order as in IA; second, requests that access different state
objects may be reordered. The latter is safe as, for a given

initial state, the result of executing those requests in any
order places replicas in the same final state. A selector may
delay a request accessing only unmaintained objects until the
effects of the request are reflected in stable checkpoints for
those objects. When a selector has obtained full checkpoint
certificates for all objects accessed by a request, it is safe to
remove the request from IS , as at least f + 1 replicas have
already executed the requests and agreed on the contents of
the checkpoints.

A Byzantine selector may provide the selectors of dif-
ferent replicas with different checkpoints for the same ob-
ject. However, as selectors only apply stable checkpoints,
the safety of a non-faulty replica cannot be compromised by
a Byzantine selector. Apart from exchanging checkpoints,
selectors do not communicate with each other.

Voters (i. e., clients in traditional BFT systems) do not di-
rectly interact with ODRC selectors. However, a Byzantine
voter may send an incomplete-voting notification for an arbi-
trary request r to the agreement stage of a non-faulty replica.
If r has already been executed on the local replica, the agree-
ment stage resends the cached reply for r (R3). Otherwise,
the agreement stage forwards r to the local selector by call-
ing force request (see Section 4.2.1). As the selector ig-
nores all requests that are not included in the totally-ordered
sequence of requests provided by the agreement stage, a
Byzantine voter is not able to force a selector into execut-
ing a request that has never been agreed on. Furthermore, a
non-faulty selector will not execute the same request more
than once (see Figure 4, lines 2 and 6).

4.3.2 Liveness
In the absence of faults, each request is executed on at least
f + 1 replicas; that is, voters are able to collect enough
identical replies to determine the correct result (V1). In case
of network problems or faulty or slow replicas preventing a
successful voting, voters eventually inform (e. g., via request
retransmission) all selectors of non-faulty replicas about the
lack of identical replies (V2). As a result, the affected request
will finally be processed on all non-faulty replicas, allowing
the client to make progress. Incomplete checkpoint voting is
handled similarly, triggered by non-faulty selectors not able
to assemble a stable object-checkpoint certificate.

4.4 Throughput Scalability
With all replicas executing all requests, traditional agree-
ment-based BFT systems fail to provide throughput scalabil-
ity: increasing the number of replicas n (while keeping f , the
number of faults to tolerate, constant) does not increase sys-
tem throughput. To improve throughput scalability, a number
of BFT systems have been proposed where only a quorum
of replicas handles and processes a request [Abd-El-Malek
2005, Cowling 2006]. However, in order to be safe, any two
arbitrary quorums are required to overlap in at least one non-
faulty replica. Therefore, quorum size increases with the to-
tal number of replicas n.
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Figure 6. Overview of the number of replicas a request is
actually executed on when more replicas are provided than
necessary to tolerate f = 1 Byzantine fault.

With selectors operating on an agreed totally-ordered se-
quence of requests, in our approach, there is no need for sub-
sets of replicas executing a request to overlap. Therefore, the
minimal subset size of f + 1 replicas only depends on the
number of faults to tolerate. As shown in Figure 6, for tol-
erating one Byzantine fault, a request is processed by two
replicas, independent of n. In contrast, HQ [Cowling 2006],
which requires the smallest quorums, processes a request
on n+f+1

2 [Merideth 2008] replicas, not scaling as well.
Note that Figure 6 compares the average normal-case

operation of a service requiring only few cross-border re-
quests (see Section 8). To improve throughput scalability us-
ing ODRC, agreement-based systems need to solve the scal-
ability bottleneck of quadratic costs for agreement [Castro
1999], for example, by using different clusters for agreement
and execution [Clement 2009, Yin 2003]. This way, the num-
ber of execution replicas can be increased without degrading
the performance of the agreement stage. However, our eval-
uation results show, that ODRC already enables a significant
throughput increase for the minimal number of replicas.

5. Optimizations
This section presents optimizations that either directly in-
crease performance of the ODRC algorithms presented in
the previous two sections or contribute to the efficiency of
the overall system. Furthermore, we describe approaches to
configure selectors in order to customize system behavior.

5.1 Dynamic State Distribution
We expect application-specific heuristics to be used to assign
objects to replicas; an optimal scheme distributes objects in
a way that load is equally balanced across replicas. However,
as object access patterns may be subject to change during the
lifetime of a service, a static distribution scheme does not
guarantee a permanent benefit. To compensate load imbal-
ances, the selector i of an overloaded replica may therefore
dynamically delegate the maintenance of an object to an-
other selector j. Note that the fault handling mechanism (see
Section 4.2) ensures that other selectors (including i) will
step in to tolerate the fault in case j fails to maintain the
object after the handover.

5.2 Optimized Checkpointing
We expect the execution stage to make use of copy-on-write
and incremental cryptography to reduce the cost of produc-
ing object checkpoints [Castro 1999, Rodrigues 2001]. In
addition, the following techniques can be applied to optimize
checkpoint verification: first, the counter indicating the next
checkpoint creation ignores read-only requests not modify-
ing the state; as a result, state objects are only checkpointed
when modified. Second, multiple objects may be verified to-
gether using a combined certificate.

5.3 Optimistic Updating of Unmaintained Objects
The selector presented in Section 3 updates an unmaintained
object when the agreement stage inserts a committed re-
quest accessing the object. However, for agreement stages
using the standard BFT three-phase protocol, the reception
of a pre-prepare message in the first phase of the agreement
protocol is already a good indication that a certain request
is likely to be committed soon [Kotla 2007]. Therefore, an
optimized selector may provide an additional function that
allows the agreement stage to hand over a request on the
reception of its corresponding pre-prepare message. Based
on this information, the selector may optimistically start the
updating process for the unmaintained objects accessed by
the request in advance. As a result, less updating has to be
done when the request is actually committed. In case an an-
nounced request is not committed (e. g., due to a faulty pri-
mary), this optimization would only lead to unnecessary ob-
ject updates, it would not compromise safety.

5.4 Proactive Updating of Unmaintained Objects
Selectors may take advantage of periods of reduced work-
load to proactively update unmaintained objects. As a re-
sult, fewer changes have to be reproduced when requests ac-
tually demand consistency of unmaintained objects. In or-
der to guarantee an upper bound for ODRC update proce-
dures of unmaintained objects, one might also define a max-
imum number of outstanding modifying requests, forcing
the selector to update an unmaintained object when a certain
threshold is reached. In general, there is a tradeoff between
reducing replica load and minimizing update duration.

5.5 Optimized Fault Handling
In general, a selector only processes requests exclusively ac-
cessing unmaintained objects on calls to force request.
Therefore, a crashed replica may result in bad performance,
with voters on each request demanding replies from addi-
tional replicas due to incomplete voting. An optimized se-
lector may compute statistics on forced requests; on an ac-
cumulation of forced requests accessing the same object, the
selector may temporarily add the object to its maintained-
objects set. This way, voters are provided with additional
replies without having to explicitly demand them.



6. NFS Case Study
We have implemented a Byzantine fault-tolerant network
file system (NFS) to show the practicality of ODRC. In this
section, we discuss how to integrate NFS with ODRC and
present an extensive evaluation.

6.1 Service Integration
NFS manages files and directories on the basis of objects;
we define an ODRC state object to be a single NFS ob-
ject. Internally, NFS uses file handles to uniquely iden-
tify an object; there is only one type of file handle, for
both files and directories. Most NFS operations access only
one object (e. g., SETATTR, GETATTR, READ, WRITE). How-
ever, some operations access two (e. g., CREATE, REMOVE,
LOOKUP) or four (RENAME) objects and may therefore lead to
cross-border requests.

In general, a request carries the file handle(s) of the ob-
ject(s) its corresponding operation will read or modify, mak-
ing it easy to implement a request analysis function. How-
ever, there is a set of operations (e. g., CREATE, REMOVE,
RENAME) that identify some of the objects accessed by their
name. Therefore, each selector also maintains a name-to-
file-handle mapping for each object. Note that this mapping
is only an inconvenience that could be obviated by refactor-
ing the NFS service to either use only file handles or only
names to identify objects.

Our prototype comprises parts of the CBASE-FS [Kotla
2004] prototype; CBASE-FS is an extension of the BASE
implementation of a Byzantine fault-tolerant network file
system [Rodrigues 2001] that supports concurrent execu-
tion of requests. In particular, our prototype reuses the
CBASE-FS client implementation and the BASE confor-
mance wrapper. Extending the CBASE approach with an
ODRC selector module allows us to combine the perfor-
mance gains offered by processing requests in parallel with
the advantages of selective request execution.

As our file system is not the first Byzantine fault-tolerant
NFS based on state-machine replication [Castro 1999, Kotla
2007; 2004, Rodrigues 2001, Yin 2003], we omit a discus-
sion of replication-related problems (e. g., non-determinism)
that are solved in the BASE abstraction layer. Like BASE,
our file system provides NFSv2 [Sun Microsystems 1989].

6.2 Evaluation
We evaluate our file system using a cluster of dual-core
hosts (2.4 GHz, 2 GB RAM) for the replicas and a cluster
of quad-core hosts (2.4 GHz, 8 GB RAM) for the clients,
all hosts are connected with switched 1 Gb/s Ethernet. All
experiments use 32 NFS server daemons per replica and a
block size of 4 kilobytes for both reads and writes2; the data
is stored on disk.

2 4 kilobytes is the standard block size of CBASE-FS. Note that the max-
imum block size of NFSv2 is 8 kilobytes. Later versions allow a higher
block size and are therefore capable of achieving a higher throughput.
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Figure 7. System throughput versus response time at the
client for writes of 4 kilobytes with and without ODRC.

The baseline system (BFT-4) comprises four replicas and
is therefore able to tolerate one Byzantine fault. Each replica
hosts an agreement stage and an execution stage that run
in separate processes and communicate via local sockets.
BFT-4 replicas rely on the three-phase BFT protocol [Castro
1999] to reach agreement. The execution stage of a BFT-4
replica comprises a parallelizer module that allows concur-
rent execution of requests, as proposed in [Kotla 2004].

We also compare ODRC against a Zyzzyva [Kotla 2007]-
like setting (Spec-4) that uses speculative execution: all
Spec-4 replicas execute a state-modifying request after one
protocol phase and send the reply back to the client. The
client accepts the reply as soon as 3f + 1 (read-only re-
quests: 2f + 1) replicas have provided matching responses.
Note that Spec-4 does not implement the full Zyzzyva pro-
tocol, only its fast path, which is optimized for the absence
of both faults and packet losses.

We evaluate ODRC using two different settings: ODRC-4
extends the baseline system BFT-4 by introducing a selec-
tor component between the agreement stage and the execu-
tion stage of each replica; this setting allows us to evaluate
the impact of ODRC on response time and throughput for
the minimal number of replicas. ODRC-6 extends ODRC-4
with two additional replicas that only comprise an execution
stage but do not participate in the agreement protocol. In-
stead, they learn the total order of requests from the other
replicas [Yin 2003]. ODRC-6 allows us to evaluate the im-
pact of ODRC on scalability. In addition, we run the experi-
ments on unreplicated NFS to get results for the unreplicated
case, using the same configuration as for the BFT systems.

6.2.1 Normal-Case Operation
The following experiments evaluate the impact of ODRC on
throughput and response time in the absence of faults.

Micro-Benchmark We use a micro-benchmark to evaluate
the write throughput and response time of our file system
with and without ODRC. In this experiment, we vary the
number of clients that continuously write data in blocks of
4 kilobytes to separate files in a directory exported by the
file system. In the ODRC test runs, the selector uniformly
assigns files to replicas; that is, each ODRC-4 replica treats
half (ODRC-6: a third) of all files as maintained objects.



The results of the benchmark (see Figure 7) show that
for small workloads, the baseline system BFT-4 achieves
slightly better response times than the ODRC variants. This
is due to different voting conditions: an ODRC client is able
to verify a reply as soon as both (i. e., f + 1) replicas pro-
cessing the request have delivered the correct response. In
contrast, a BFT-4 client only needs to wait for the replies
of the two fastest non-faulty replicas. This way, the baseline
system better compensates delays introduced by the agree-
ment stage and other replication overhead that may vary be-
tween replicas. However, our results show that this weakness
of ODRC becomes irrelevant for higher workloads.

The baseline system reaches a maximum throughput
of 5.7 Mb/s for writes of 4 kilobytes. By selectively exe-
cuting requests, ODRC-4 reduces the load on replicas and
is therefore able to increase the overall throughput by 53%,
using the same number of replicas as BFT-4. At the same
time, the response time of ODRC-4 is about 30% lower
than the response time of BFT-4. Our experiments show
that these improvements in throughput and response time
even outweigh the overhead of state-machine replication and
Byzantine agreement allowing ODRC-4 to outperform un-
replicated NFS in both categories. Relying on two additional
execution replicas, ODRC-6 is able to increase the through-
put to 9.9 Mb/s while further improving response time.

Note that using speculative execution (Spec-4), as for ex-
ample implemented in Zyzzyva, does not offer any benefits
over using traditional BFT in this experiment. The reason
for that is that Byzantine agreement only contributes about
one to four milliseconds to the response time observed by
the clients (more than 14 milliseconds), most of the time
is added by the application. Improving agreement through
speculative execution therefore has little effect on the over-
all response time. In contrast, as clients are required to wait
for 3f +1 matching replies instead of only f +1, the slowest
replica dictates the performance of Spec-4.

Macro-Benchmark We use the Postmark [Katcher 1997]
benchmark to evaluate the performance of our Byzantine
fault-tolerant file system in a realistic usage scenario. Post-
mark simulates the usage pattern of modern Internet ser-
vices such as email or web-based commerce. We apply the
same configuration as [Kotla 2004] and run a read-mostly
experiment where the transaction phase of the benchmark fa-
vors reads over writes and a write-mostly experiment where
reads are dominated by writes. We increase the number of
clients (i. e., instances of the Postmark benchmark running
in parallel) from five to fifty.

To measure the impact of object distribution on perfor-
mance, we apply two different strategies to ODRC-4. The
first strategy assigns file-system objects (i. e., files and direc-
tories) in a round-robin fashion to replicas. As this approach
completely ignores dependencies between different objects,
we consider it a worst-case strategy. The second object dis-
tribution strategy uses a simple locality heuristic: it assigns
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Figure 8. Results of the Postmark benchmark for two sce-
narios where (a) reads and (b) writes are favored during the
transaction phase of the benchmark.

a file to the same replicas its parent directory is assigned to;
directories are still assigned round-robin and may therefore
be assigned to different replicas than their parent directories.

Figure 8 presents the results of the Postmark experiments.
For both scenarios, it takes BFT-4 about 50% longer than
unreplicated NFS to complete the benchmarks. Applying
the round-robin distribution strategy allows ODRC-4 to run
the benchmarks in 37% less time than BFT-4 for medium
and high workloads. Cross-border requests represent about
11% of all requests for this strategy; assigning files to the
same replicas as their parent directory removes almost all
of them. Therefore, benchmark durations further decrease
for ODRC-4 when using the locality strategy; compared to
BFT-4, benchmarks complete in 44% (read-mostly) and 47%
(write-mostly) less time. Note that these numbers are close
to the theoretical optimum for ODRC-4 of 50% (i. e., a 100%
increase in throughput). As a result, ODRC-4 is able to
outperform unreplicated NFS by 19% and 25%, respectively.

Applying the locality strategy, ODRC-6 completes the
benchmarks in about 60% less time than the baseline system;
67% is the optimum for ODRC-6. This confirms the good
throughput scalability of the ODRC approach.

6.2.2 Introducing Faults
We now evaluate ODRC in the presence of faults. We distin-
guish between an object fault that leads to corrupted replies
on all requests accessing the faulty object, and a replica fault
that prevents a replica from providing replies at all.
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Figure 9. Impact of faults on the average response time at
the client (1 sample/s) of ODRC-4 for a write-only and a
read-only NFS micro-benchmark with twenty clients.

Micro-Benchmarks This experiment evaluates the impact
of faults on ODRC-4 running the NFS write-only micro-
benchmark with twenty clients. For comparison, we also
run a read-only micro-benchmark where clients read data
in blocks of 4 kilobytes from separate files. In each case,
we evaluate the worst-case scenario for an object checkpoint
interval of k = 100 (see Section 3.4); that is, for the write-
only benchmark, selectors on non-faulty replicas first have to
replay the latest 100 write operations for the affected file(s)
before being able to provide a reply to the pending request.
For the read-only benchmark, no state modifications need to
be replayed3.

Figure 9a shows that when an object fault occurs during
the write-only benchmark, ODRC-4 is not able to provide
the client with enough replies to make progress for about
one second (resulting in a peak in average response time).
During this time, non-faulty replicas that do not maintain
the affected file bring their local copies of the file up to
date. When this procedure is complete, they process the
pending request and provide additional replies. Please refer
to Section 8 for a discussion of approaches to minimize the
disruption. However, note that none of the clients accessing
other files is penalized.

3 Note that we use an optimization here: as stated in [Kotla 2004], the READ
operation in NFS modifies the last-accessed-time attribute of a file (i. e., it is
a state-modifying operation). However, when replaying multiple successive
READ requests, only the latest one (i. e., the pending request) actually has to
be processed in order to bring the last-accessed-time attribute up to date.
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Figure 10. Impact of a replica fault on the average system
throughput of ODRC-4 and ODRC-6 (1 sample / 10 s) for the
Postmark write-mostly benchmark with thirty clients.

When we inject an object fault during the read-only
benchmark, clients observe no notable response time in-
crease (see Figure 9b). With no state modifications to replay,
other replicas are prepared to process the pending request
right away, tolerating the fault without disruption.

Figures 9c and 9d show that the failure of a replica has
a similar impact on system performance than multiple con-
current object faults. In the write-only benchmark, half of
clients experience a service disruption as their files are main-
tained objects on the faulty replica and therefore have to be
updated on other replicas. With affected files remaining up to
date on non-faulty replicas from then on, there are no disrup-
tions on subsequent requests. However, the average response
time increases after a replica fault, as there remain only three
non-faulty replicas that process all requests.

Macro-Benchmark This experiment introduces a replica
fault during the transaction phase of a write-mostly Post-
mark benchmark with thirty clients, for both ODRC-4 and
ODRC-6. Figure 10 shows the average combined through-
put of all clients for this scenario in comparison to BFT-4
and ODRC-4 runs without faults.

When the replica fault occurs, the throughput of ODRC-4
drops by about 50% due to files affected by the fault being
restored on non-faulty replicas. Files are updated on the first
access after the replica fault has occurred. In consequence,
the impact of fault handling is not concentrated to a sin-
gle point in time but distributed over a period of recovery,
allowing ODRC-4 to keep throughput performance above



700 requests/s. With more and more objects being up to date,
throughput steadily increases during this phase, eventually
reaching the performance level of the baseline system. This
behavior is in line with expectations, as in both cases, at this
point, all non-faulty replicas process every request.

ODRC-6 comprises more replicas than actually required
to tolerate the f = 1 Byzantine fault; that is, not all non-
faulty replicas need to participate in the handling of a fault.
To exploit this, we enable the fault handling for an object on
only a set of 3f + 1 = 4 selectors and disable it on the other
two selectors; this is safe regardless of where a fault occurs.
Figure 10b shows the benefit of this optimization. When we
trigger the replica fault, the throughput of ODRC-6 only
decreases by about 30% and does not drop to the BFT-4
level. Furthermore, some clients are able to complete the
benchmark in almost the same time as in the absence of
faults, as the files they access are maintained on replicas that
only play a minor role in the handling of the replica fault;
this explains the throughput drop at t = 255.

In general, tolerating a replica fault in ODRC-6 is not
as costly as in ODRC-4. As objects are distributed across
six (instead of four) replicas, a selector in ODRC-6 main-
tains only a third (instead of half) of all objects. As a result,
when a replica fails, other selectors only need to update a
third (instead of half) of the service state at most. Increasing
the total number of replicas will enhance this advantage.

7. ZooKeeper Case Study
ZooKeeper [Hunt 2010] is a distributed coordination system
that provides distributed applications with basic services like
leader election, group membership, distributed synchroniza-
tion, and configuration maintenance. ZooKeeper is widely in
use at Yahoo for crucial tasks like failure recovery. Based on
the original crash-tolerant implementation, we have built a
Byzantine fault-tolerant version of the ZooKeeper service.

7.1 Service Integration
ZooKeeper stores information in a hierarchical namespace.
Each tree node is able to store data, and to manage child
nodes; we define an ODRC state object to be a single
ZooKeeper node. A node is uniquely identified by its path.
Each request carries the full path information of the node
it will operate on as a string; the ODRC request analysis
function uses this string to determine object access.

Our prototype comprises the application logic of the orig-
inal ZooKeeper implementation. However, in order to make
the service Byzantine fault-tolerant, we substitute the crash-
tolerant protocol ZooKeeper uses to order requests with
the standard three-phase BFT protocol. Furthermore, we
introduce voting at the client, and add a small abstraction
layer at the replica that ensures consistency of ZooKeeper
node metadata (e. g., timestamps and node version coun-
ters). Please refer to [Clement 2009] for a discussion of the
measures it takes to enforce deterministic ZooKeeper repli-
cas in the context of Byzantine fault tolerance.
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Figure 11. Realized throughput for repeatedly setting the
data of ZooKeeper nodes using different data sizes between
1 byte and 3 kilobytes.

7.2 Evaluation
For our evaluation of ZooKeeper, we use the same cluster
of machines as well as the same system settings as in Sec-
tion 6.2. All systems are configured to tolerate one (Byzan-
tine) fault; therefore, the setting for plain crash-tolerant
ZooKeeper comprises three replicas.

7.2.1 Normal-Case Operation
We evaluate the write throughput of the different ZooKeeper
variants with an experiment in which clients repeatedly write
new data chunks of ZooKeeper-typical sizes to nodes; Fig-
ure 11 presents the results of this experiment. For one-byte
writes, ODRC-4 achieves an 85% improvement over the
baseline system BFT-4. As increasing the data size puts more
load on the agreement stage, the benefit of ODRC-4 de-
creases to 63% for writes of 3 kilobytes. For the same rea-
son, the improvement of ODRC-6 over ODRC-4 is higher
for small data sizes. However, for large requests, ODRC-4 is
able to outperform the crash-tolerant ZooKeeper implemen-
tation, using only the minimal number of replicas required
for Byzantine fault tolerance. Note that in this experiment,
again, speculation (Spec-4) does not provide a substantial
performance gain due to the fact that clients have to wait for
identical replies from all four replicas to make progress.

7.2.2 Introducing Faults
We repeat the write-only micro-benchmark experiments of
Section 6.2.2 for ZooKeeper to examine the worst-case im-
pact of an object fault and a replica fault on the response time
of ODRC-4. Figure 12 shows that, in contrast to NFS, faults
that occur during the write-only experiment do not lead
to a service disruption that is noticeable at the ZooKeeper
client. The reason for that lies in the fact that the data of a
ZooKeeper node is always written (and also read) atomically
and in its entirety; that is, each write operation replaces all
the data stored at a node. In consequence, an ODRC selec-
tor is able to update the complete data of an unmaintained
node by just replaying the latest write request and adjusting
the node metadata to reflect the current version number. Ex-
ploiting this property of ZooKeeper, which is also provided
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Figure 12. Impact of faults on the average response
time (1 sample/s) of ODRC-4 for a write-only ZooKeeper
workload from twenty clients.

by other services (e. g., Chubby [Burrows 2006]), allows to
significantly speed up fault handling. Of course, the response
time also decreases for ZooKeeper after a replica fault (see
Figure 12b), as the remaining replicas process all requests.

8. Discussion
Our evaluation shows that ODRC can increase the perfor-
mance of a replicated BFT system for the default number of
replicas by optimizing the resource utilization of execution
stages. Thereby, cross-border requests are a key factor limit-
ing ODRC performance gains, as they contradict the goal of
executing every request on only a minimal subset of repli-
cas. As the fraction of cross-border requests is not an intrin-
sic property of a service, but depends to a great extent on
the service usage pattern and the object distribution scheme
used in ODRC, the occurrence of cross-border requests can
be contained by an effective object distribution strategy. For
NFS, for example, it suffices to assign files and their parent
directories to the same replicas (as done by the locality strat-
egy, see Section 6.2.1) to reduce the fraction of cross-border
requests to almost zero. Nevertheless, extensive use of cross-
border requests may disqualify a service from ODRC bene-
fits, if refactoring the service is not an option.

Like other BFT systems [Kotla 2007, Wood 2011],
ODRC is optimized for fault-free operation. Our evaluation
of NFS shows that when a fault occurs, duration of the ser-
vice disruption depends on how outdated the local version
of the affected object is on non-faulty replicas (see Sec-
tion 6.2.2). In the worst case, the object has to be recreated
before being able to make progress. Although this circum-
stance does not endanger liveness, in practice, additional
measures may be taken to trade off some of the performance
gains made possible by ODRC in return for a fault-handling
speed up. In particular, this can be achieved by proactively
updating unmaintained objects (see Section 5.4), limiting
the extent to which the local copy of an object becomes
outdated. However, as the ZooKeeper example shows, there
are also services where such measures are not necessary, as
handling a fault does not lead to a service disruption.

The evaluation results for NFS in Section 6.2.1 show
that selective request execution improves response times for
medium and high workloads. However, ODRC is not ca-
pable of reducing the minimal response time of a Byzan-
tine fault-tolerant system, which is mainly dictated by the
protocol used for Byzantine agreement. As ODRC uses the
agreement stage as a black box and therefore does not rely
on a specific protocol for request ordering, the approach can
be combined with already available [Clement 2009, Correia
2004, Yin 2003] as well as future systems targeting to reduce
the agreement overhead.

9. Related Work
Most related work in the fields of BFT state-machine repli-
cation has already been discussed in Section 2, in connection
with our system model. In this context, we presented a list of
BFT systems [Castro 1999, Correia 2004, Kotla 2004, Reiser
2007, Rodrigues 2001, Yin 2003] that may benefit from
ODRC. Zyzzyva [Kotla 2007] and recent work from Guer-
raoui et al. [Guerraoui 2010] did not make the list as they
improve performance by optimistically executing requests
in an order that is speculated on. With the request order not
being stable (which contradicts R1, see Section 2.2.1), repli-
cas may become inconsistent and have to rely on the help of
clients to converge. In contrast, the use of ODRC may lead to
partly outdated but never inconsistent replicas. Furthermore,
using a selector, a replica is able to update its state without
the help of clients and only based on local knowledge.

Yin et al. [Yin 2003] proposed the separation of agree-
ment and execution, which is essential to benefit from the
throughput scalability of our approach (see Section 4.4).
Clement et al. [Clement 2009] introduced a third stage
to reduce authentication cost and optimize request order-
ing in cluster environments. Prophecy [Sen 2010] improves
throughput and latency of BFT state-machine replication
for read-centric workloads by introducing a trusted reply-
checksum cache. We consider the latter two approaches or-
thogonal to our work.

Kotla et al. [Kotla 2004] (CBASE) proposed to increase
the performance of a BFT system by executing indepen-
dent requests in parallel. Two requests are independent, if
replicas can process the requests in a different order with-
out compromising correctness; this is true, for example, if
the requests access different parts of the replica state. In
CBASE, information about state access of requests is used
by a parallelizer module located between agreement stage
and execution stage that forwards concurrent requests to a
set of worker threads. Still, all CBASE replicas process all
requests. Like CBASE, ODRC uses information about the
state access of requests to optimize system performance.
However, ODRC replicas only process requests that have
been selected for execution by the local selector module.
Both approaches can be combined by forwarding the output
of a selector to a parallelizer, as implemented in our pro-



totype. Our evaluations for both NFS and ZooKeeper show
that combining concurrent execution with selective execu-
tion (ODRC-4) allows a significant performance improve-
ment over plain concurrent execution (BFT-4).

Processing full requests on only a subset of replicas was
originally proposed by Pâris [Pâris 1986] in the context of
a crash-tolerant file system that relies on quorums. The file
system distinguishes between replicas that contain the com-
plete file data and a version number (“copies”) and replicas
that only contain file version numbers but no data (“wit-
nesses”). While copies execute the full request, witnesses
only increment their local file version counter when process-
ing a modifying request; still, witnesses participate in each
operation. In case of faults, witnesses may be upgraded to
copies. Liskov et al. implemented a related approach in the
Harp file system [Liskov 1991] that makes active use of wit-
nesses only during times of node failures or network parti-
tions. Cheap Paxos [Lamport 2004] generalizes the idea to
use lightweight auxiliary nodes for handling crashes of full-
fledged replicas in order to reduce the resource requirements
of a replicated service. Ladin et al. [Ladin 1992] have shown
that by processing a request on only a subset of replicas and
lazily updating the other replicas, a crash-tolerant replicated
service can be built that outperforms an unreplicated service.

SPARE [Distler 2011] and ZZ [Wood 2011] are designed
to minimize resource consumption in the context of Byzan-
tine fault tolerance. Both systems rely on virtualization and
use only f + 1 service replicas during normal-case opera-
tion. In case of faults or suspected faulty behavior, the sys-
tems quickly activate up to f additional replicas running in
separate virtual machines. SPARE and ZZ focus on mini-
mizing the resource footprint of a BFT system by reducing
the number of service replicas; they were not designed to
increase performance. ODRC also proposes an optimization
that exploits the fact that f + 1 replies are enough to prove
a response correct in the absence of faults. However, ODRC
uses this property to improve resource utilization of execu-
tion stages for the default number of replicas (i. e., 3f + 1 in
traditional BFT systems), which allows to increase the upper
throughput bound of the overall system.

State partitioning was previously applied to tolerate
crashes and increase scalability in large-scale file systems
and distributed data storage [Gribble 2000, MacCormick
2004, van Renesse 2004]. State partitioning was also used in
the context of Byzantine fault tolerance: Farsite [Adya 2002]
and OceanStore [Rhea 2003] are large-scale file systems that
assign files to different groups of 3f +1 replicas, each sepa-
rately executing a BFT protocol. As a result, the throughput
of the overall system improves for an increased number of
replica groups. However, within a replica group, all replicas
execute all requests. Our approach increases throughput by
applying state partitioning within a replica group, obviating
the need for complex inter–replica-group protocols to handle
cross-border requests. Therefore, ODRC already achieves a
significant performance improvement for the default num-

ber of replicas. However, optimizing the performance of a
single replica group, a possible use case of ODRC is to act
as a building block for large-scale systems.

Malek et al. [Abd-El-Malek 2005] used quorums to build
a BFT system for arbitrary services (Q/U). It requires a min-
imum of 5f +1 servers and a quorum size of 4f +1 to toler-
ate f Byzantine faults. HQ [Cowling 2006] implements a hy-
brid approach that combines quorum-based and agreement-
based protocols to reduce the number of servers to 3f+1 and
the minimal quorum size to 2f + 1. Both systems make use
of quorums to achieve fault scalability. As discussed in Sec-
tion 4.4, ODRC offers better throughput scalability. In Q/U
and HQ, concurrent object access may lead to inconsistent
replica states, which requires replicas to revert previous state
modifications. In contrast, replica states in our approach may
partially become outdated, but never inconsistent.

10. Conclusion
A traditional agreement-based Byzantine fault-tolerant sys-
tem executes all requests on all replicas to ensure consis-
tency. As a result, the system usually provides more than
the f+1 identical replies to a request that are actually needed
for a client to make progress in the absence of faults.

In this paper, we have shown that a selector module be-
tween agreement stage and execution stage is able to in-
crease the performance of the overall BFT system by selec-
tively executing each request on only a subset of f +1 repli-
cas, based on the state objects a request accesses. As this
approach may lead to parts of the replica state being out-
dated, the selector ensures replica consistency by updating
the state of objects on demand, that is, at the time and to the
extent required by a request to be executed.

Our evaluation of Byzantine fault-tolerant variants of
NFS and ZooKeeper shows that the use of on-demand
replica consistency lowers the response time for medium
and high workloads, and is able to increase the throughput
of a Byzantine fault-tolerant service beyond the throughput
of the corresponding non–fault-tolerant unreplicated service.
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