Symbolic Crosschecking of Floating-Point and SIMD Code

Peter Collingbourne, Cristian Cadar, Paul H J Kelly

Department of Computing, Imperial College London

13 April, 2011
SIMD

- Single Instruction Multiple Data
- A popular means of improving the performance of programs by exploiting data level parallelism
- SIMD vectorised code operates over one-dimensional arrays of data called vectors

```c
__m128 c = _mm_mul_ps(a, b);
/* c = { a[0]*b[0], a[1]*b[1], a[2]*b[2], a[3]*b[3] } */
```

- SIMD code is typically translated manually based on a reference scalar implementation
- Manually translating scalar code into an equivalent SIMD version is a difficult and error-prone task
SIMD and Floating Point

- SIMD vectorised code frequently makes intensive use of floating point arithmetic
- Developers have to reason about subtle floating point semantics:
 - Associativity
 - Distributivity
 - Precision
 - Rounding
Spot the Difference

Scalar

\[
out[0] = x[0] \times y[0] \times z[0];
\]

SIMD

\[
outv = _mm_mul_ps(xv, _mm_mul_ps(yv, zv));
\]

Scalar

\[
out[0] = \text{std} :: \text{min}(x[0], y[0]);
\]

SIMD

\[
outv = _mm_min_ps(xv, yv);
\]
min and max are not commutative or associative in FP!

Scalar

$$\text{out}[0] = \text{std} :: \text{min}(x[0], y[0]);$$

SIMD

$$\text{out}_v = _\text{mm}_\text{min}_ps(x_v, y_v);$$

- **SSE _mm_min_ps:**

 $$\text{min}(X, Y) = \text{Select}(X <_{\text{ord}} Y, X, Y)$$

- **$X <_{\text{ord}} Y$ evaluates to false if either of X or Y is NaN**

 $$\text{min}(X, \text{NaN}) = \text{NaN}$$
 $$\text{min}(\text{NaN}, Y) = Y$$

 $$\text{min}(\text{min}(X, \text{NaN}), Y) = \text{min}(\text{NaN}, Y) = Y$$
 $$\text{min}(X, \text{min}(\text{NaN}, Y)) = \text{min}(X, Y)$$
min and max are not commutative or associative in FP!

Scalar

```cpp
out[0] = std::min(x[0], y[0]);
```

SIMD

```cpp
outv = __mm_min_ps(xv, yv);
```

- **SSE `__mm_min_ps`:**

 $$\min(X, Y) = \text{Select}(X <_{\text{ord}} Y, X, Y)$$

- **$X <_{\text{ord}} Y$ evaluates to false if either of X or Y is NaN**

 $$\begin{align*}
 \min(X, \text{NaN}) &= \text{NaN} \\
 \min(\text{NaN}, Y) &= Y
 \end{align*}$$

 $$\begin{align*}
 \min(\min(1, \text{NaN}), 200) &= \min(\text{NaN}, 200) = 200 \\
 \min(1, \min(\text{NaN}, 200)) &= \min(1, 200) = 1
 \end{align*}$$
min and max are not commutative or associative in FP!

Scalar

```cpp
out[0] = std::min(x[0], y[0]);
```

SIMD

```cpp
outv = _mm_min_ps(xv, yv);
```

- **SSE _mm_min_ps:**
 \[
 \min(X, Y) = \text{Select}(X <_{\text{ord}} Y, X, Y)
 \]

- **X <_{\text{ord}} Y** evaluates to false if either of X or Y is NaN

- **libstdc++ std::min**
 \[
 \text{stl}_{\text{min}}(X, Y) = \min(Y, X)
 \]

- **out[0] = \min(x[0], y[0])**
- **outv[0] = \min(yv[0], xv[0])**
Symbolic Execution for SIMD

- A novel automatic technique based on symbolic execution for verifying that the SIMD version of a piece of code is equivalent to its (original) scalar version

- Symbolic execution can automatically explore multiple paths through the program

- Determines the feasibility of a particular path by reasoning about all possible values using a constraint solver
Challenges

- Huge number of paths involved in typical SIMD vectorisations
- The current generation of symbolic execution tools lack symbolic support for floating point and SIMD
 - Due to lack of available constraint solvers
 - (Recent development: floating point support in CBMC)
Architecture

- **Execution Engine**
 - Scalar code
 \[x[i] \times y[i] \times z[i] \]
 - SIMD code
 \[_mm_mul_ps(xv, _mm_mul_ps(yv, zv)) \]
 - Test harness
    ```
    assert(scalar(...) == simd(...));
    ```
choose (scalar path, SIMD path)

scalar code
x[i] * y[i] * z[i]

SIMD code
_mm_mul_ps(xv, _mm_mul_ps(yv, zv))

test harness
assert(scalar(...) == simd(...));
Architecture

choose (scalar path, SIMD path)

paths equiv?

yes

no mismatch found!

scalar code
\[x[i] \times y[i] \times z[i] \]

SIMD code
\[
_mm_mul_ps(xv, _mm_mul_ps(yv, zv))
\]

test harness
assert(scalar(...) == simd(...));
Architecture

execution engine

choose (scalar path, SIMD path)

paths equiv?

no more paths

all paths equivalent

mismatch found!

scalar code
\[x[i] \times y[i] \times z[i] \]

SIMD code
\[_mm_mul_ps(xv, _mm_mul_ps(yv, zv)) \]

test harness
\[assert(scalar(...) == simd(...)); \]
Architecture

execution engine

choose (scalar path, SIMD path)

scalar code
\[x[i] \times y[i] \times z[i] \]

SIMD code
_mm_mul_ps(xv, _mm_mul_ps(yv, zv))

test harness
assert(scalar(...) == simd(...));

paths equiv?

no more paths

all paths equivalent

no

mismatch found!

yes
Symbolic Execution – Operation

- Program runs on *symbolic input*, initially unconstrained
- Each variable may hold either a concrete or a symbolic value
- Symbolic value: an input dependent expression consisting of mathematical or boolean operations and symbols
 - For example, an integer variable \(i \) may hold a value such as \(x + 3 \)
- When program reaches a branch depending on symbolic input
 - Determine feasibility of each side of the branch
 - If both feasible, *fork* execution and follow each path separately, adding corresponding constraints on each side
Symbolic Execution – Example

int x;
msymbolic(x);

if (x > 0) {
 ...
} else {
 ...
}

if (x > 10) {
 ...
} else {
 ...
}
int x;
mksymbolic(x);

if (x > 0) {
 ...
} else {
 ...
}

if (x > 10) {
 ...
} else {
 ...
}
Symbolic Execution – Example

```plaintext
int x;
mksymbolic(x);

if (x > 0) {
    ...
} else {
    ...
}

if (x > 10) {
    ...
} else {
    ...
}
```
Huge number of paths involved in typical SIMD vectorisations

The current generation of symbolic execution tools lack symbolic support for floating point and SIMD
 - Due to lack of available constraint solvers
 - (Recent development: floating point support in CBMC)
Architecture

execute

 scalar code
 x[i] * y[i] * z[i]

SIMD code
 _mm_mul_ps(xv, _mm_mul_ps(yv, zv))

paths equiv?
 no
 mismatch found!
 yes
 all paths equivalent

choose
 (scalar path, SIMD path)

no more paths

40

Architecture

Choose (scalar path, SIMD path)

Static path merging

Execution engine

Scalar code:
\[x[i] \times y[i] \times z[i] \]

SIMD code:
\[_mm_mul_ps(xv, _mm_mul_ps(yv, zv)) \]

Test harness:
\[\text{assert(scalar(...) == simd(...));} \]

Paths equiv?
- yes
- no

Paths equivalent:
- all paths equivalent
- mismatch found!

No more paths:
Static Path Merging

```c
for (unsigned i = 0; i < N; ++i) {
}
```

- 2^N paths!
Static Path Merging

\[
diff(x, y) = x > y \ ? \ x - y \ : \ y - x
\]

\[
\begin{align*}
& x > y \\
& \neg (x > y)
\end{align*}
\]

\[
\begin{array}{ll}
B & \ldots \\
& \%r1 = "x-y"
\end{array}
\begin{array}{ll}
C & \ldots \\
& \%r2 = "y-x"
\end{array}
\]

\[
D & \%r = \text{phi} [\%r1, \%B], [\%r2, \%C] \\
& \ldots
\]
Static Path Merging

\[\text{diff}(x, y) = x > y \ ? \ x - y \ : \ y - x \]

\[diff(x, y) = x > y \ ? \ x - y : y - x \]

\[X \]

ABC

\[%r1 = "x - y" \]

\[%r2 = "y - x" \]

\[\text{phi} [%r1, %B], [%r2, %C] \]

\[\text{diff}(x, y) = x > y \ ? \ x - y : y - x \]

\[\text{select} %p, %r1, %r2 \]

\[A' \]

\[%p = "x > y" \]

\[B \]

\[%r1 = "x - y" \]

\[C \]

\[%r2 = "y - x" \]

\[D' \]

\[%r = \text{select} %p, %r1, %r2 \]

\[D' \]

\[%r = \text{select} %p, %r1, %r2 \]
Static Path Merging

\[\text{diff}(x, y) = x > y \ ? \ x - y : y - x \]

- A
 - \(x > y \)
 - \(\neg(x > y) \)
- B
 - \(\%r1 = "x - y" \)
- C
 - \(\%r2 = "y - x" \)
- D
 - \(\%r = \text{phi} \, [\%r1, \%B], \,[\%r2, \%C] \)
 - \(\ldots \)

\[\begin{array}{c}
\text{morph benchmark, 16} \times 16 \text{ matrix:} \\
2^{256} \rightarrow 1
\end{array} \]
Challenges

- Huge number of paths involved in typical SIMD vectorisations
- The current generation of symbolic execution tools lack symbolic support for floating point and SIMD
 - Due to lack of available constraint solvers
 - (Recent development: floating point support in CBMC)
Architecture

- **Execution Engine**
 - Scalar code: \(x[i] * y[i] * z[i] \)
 - SIMD code: `_mm_mul_ps(xv, _mm_mul_ps(yv, zv))`
 - Test harness:
    ```
    assert(scalar(...) == simd(...));
    ```

- **Choose (scalar path, SIMD path)**
 - Paths equiv? (no more paths)
 - Yes: all paths equivalent
 - No: mismatch found!
Technique

- The requirements for equality of two floating point expressions are harder to satisfy than for integers
- Usually, the two expressions need to be built up in the same way to be sure of equality
- We can check expression equivalence via simple expression matching!
Architecture

static path merging

execution engine

choose (scalar path, SIMD path)

scalar code
\[x[i] \times y[i] \times z[i] \]

SIMD code
_mm_mul_ps(xv, _mm_mul_ps(yv, zv))

test harness
assert(scalar(...) == simd(...));

paths equiv?
no
mismatch found!

yes
all paths equivalent

no more paths
Architecture

Static Path Merging

- Scalar code: \(x[i] \times y[i] \times z[i] \)
- SIMD code:
 \[
 __m\m_mul_ps(xv, __m\m_mul_ps(yv, zv))
 \]

Execution Engine

- Test harness:
 \[
 \text{assert(scalar(...)} == \text{simd(...))}\
 \]

Choose (Scalar Path, SIMD Path)

- Canonicalisation

Pathsequiv?

- Paths equivalent
- Mismatch found!

No More Paths

- All paths equivalent
- No more paths
void zlimit(int simd, float *src, float *dst, size_t size) {
 if (simd) {
 __m128 zero4 = _mm_set1_ps(0.f);
 while (size >= 4) {
 __m128 srcv = _mm_loadu_ps(src);
 __m128 cmpv = _mm_cmpgt_ps(srcv, zero4);
 __m128 dstv = _mm_and_ps(cmpv, srcv);
 _mm_storeu_ps(dst, dstv);
 src += 4; dst += 4; size -= 4;
 }
 }
 while (size) {
 *dst = *src > 0.f ? *src : 0.f;
 src++; dst++; size--;
 }
}
void zlimit(int simd, float *src, float *dst, size_t size) {
 if (simd) {
 __m128 zero4 = _mm_set1_ps(0.f);
 while (size >= 4) {
 __m128 srcv = _mm_loadu_ps(src);
 __m128 cmpv = _mm_cmpgt_ps(srcv, zero4);
 __m128 dstv = _mm_and_ps(cmpv, srcv);
 _mm_storeu_ps(dst, dstv);
 src += 4; dst += 4; size -= 4;
 }
 }
 while (size) {
 *dst = *src > 0.f ? *src : 0.f;
 src++; dst++; size--;
 }
}
Scalar/SIMD Implementation

while (size) {
 *dst = *src > 0.f ? *src : 0.f;
 src++; dst++; size--;
}

Scalar dst[0]

Select

> src[0]

src[0] 0

src[0] 0
Scalar/SIMD Implementation

```c
void zlimit(int simd, float *src, float *dst, size_t size) {
    if (simd) {
        __m128 zero4 = _mm_set1_ps(0.f);
        while (size >= 4) {
            __m128 srcv = _mm_loadu_ps(src);
            __m128 cmpv = _mm_cmpgt_ps(srcv, zero4);
            __m128 dstv = _mm_and_ps(cmpv, srcv);
            _mm_storeu_ps(dst, dstv);
            src += 4; dst += 4; size -= 4;
        }
    }
    while (size) {
        *dst = *src > 0.f ? *src : 0.f;
        src++; dst++; size--;
    }
}
```
Scalar/SIMD Implementation

```c
__m128 zero4 = _mm_set1_ps(0.f);
while (size >= 4) {
    __m128 srcv = _mm_loadu_ps(src);
    __m128 cmpv = _mm_cmpgt_ps(srcv, zero4);
    __m128 dstv = _mm_and_ps(cmpv, srcv);
    _mm_storeu_ps(dst, dstv);
    src += 4; dst += 4; size -= 4;
}
```

<table>
<thead>
<tr>
<th>srcv</th>
<th>1.2432</th>
<th>-3.6546</th>
<th>2.7676</th>
<th>-9.5643</th>
</tr>
</thead>
<tbody>
<tr>
<td>cmpv</td>
<td>111...111</td>
<td>000...000</td>
<td>111...111</td>
<td>000...000</td>
</tr>
<tr>
<td>dstv</td>
<td>1.2432</td>
<td>0.0000</td>
<td>2.7676</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

| zero4 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |

| & | | | | |

35
Scalar/SIMD Implementation

```c
__m128 zero4 = _mm_set1_ps(0.f);
while (size >= 4) {
    __m128 srcv = _mm_loadu_ps(src);
    __m128 cmpv = _mm_cmpgt_ps(srcv, zero4);
    __m128 dstv = _mm_and_ps(cmpv, srcv);
    _mm_storeu_ps(dst, dstv);
    src += 4; dst += 4; size -= 4;
}
```

SIMD dst[0]

```
&
  /
 SExt src[0]
    /
     >
      /
 src[0] 0
```
Scalar/SIMD Implementation

SIMD dst[0]

&

SExt src[0]

>

src[0] 0

Scalar dst[0]

Select

>

src[0] 0

SExt(P) & X → Select(P, X, 0)

One of our 18 canonicalisation rules
KLEE-FP

- Based on KLEE, a tool for symbolic testing of C and C++ code [Cadar, Dunbar, Engler, OSDI 2008]
- KLEE is based on the LLVM compiler [Lattner, Adve, CGO 2004]
- Supports integer constraints only; symbolic FP not allowed
- KLEE-FP: our modified version of KLEE, extended with support for:
 - Symbolic floating point
 - SIMD vector instructions
 - A substantial portion of Intel SSE instruction set
 - Static path merging
 - Extended expression canonicalisation and crosschecking

http://www.pcc.me.uk/~peter/klee-fp/ (or google klee-fp)
Evaluation

- The code base that we selected was OpenCV 2.1.0, a popular C++ open source computer vision library

Corner detection
Evaluation

- Out of the twenty OpenCV source code files containing SIMD code, we selected ten files upon which to build benchmarks.
- Crosschecked 58 SIMD/SSE implementations against scalar versions:
 - 41: verified up to a certain image size (bounded equivalence)
 - 10: found inconsistencies
 - 3: false positives
 - 4: could not run
Evaluation – Methodology

- Bounded verification
 - Started with smallest possible image size (4 × 1 in most cases)
 - Tried all possible sizes up to 16 × 16 (or 8 × 8 → 8 × 8 for benchmarks with different sized input and output images)
 - ∼ 200 or ∼ 1600 combinations per benchmark
- Verified 34 benchmarks up to these limits
- 7 on a smaller set of image sizes due to:
 - Constant sized input/output images
 - Path explosion (time/memory constraints)
 - Constraint solver blow-up
Evaluation – Limitations

Covered

Not Covered

- cvpyramids, cvstereobm, cvimgwarp, cvmorph: unrolled loops unreachable using bounded verification, constraint solver blow-up

- cvfilter: symbolic malloc

SIMD Instruction Count
OpenCV – Mismatches found

<table>
<thead>
<tr>
<th>#</th>
<th>Benchmark/Algorithm</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>eigenval (f32)</code></td>
<td>Precision</td>
</tr>
<tr>
<td>2</td>
<td><code>harris (f32)</code></td>
<td>Precision, associativity</td>
</tr>
<tr>
<td>3</td>
<td><code>morph (dilate, R, f32)</code></td>
<td>Order of min/max operations</td>
</tr>
<tr>
<td>4</td>
<td><code>morph (dilate, NR, f32)</code></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td><code>morph (erode, R, f32)</code></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td><code>thresh (TRUNC, f32)</code></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td><code>pyramid (f32)</code></td>
<td>Associativity, distributivity</td>
</tr>
<tr>
<td>8</td>
<td><code>resize (linear, u8)</code></td>
<td>Precision</td>
</tr>
<tr>
<td>9</td>
<td><code>transsf.43 (s16 f32)</code></td>
<td>Rounding issue</td>
</tr>
<tr>
<td>10</td>
<td><code>transcf.43 (u8 f32)</code></td>
<td>Integer/FP differences</td>
</tr>
</tbody>
</table>

- Reported to OpenCV developers
- 2 bugs (`eigenval`, `harris`) already confirmed
Conclusion and Future Work

- Automatic technique for checking correctness of SIMD vectorisations with support for floating point operations
- Applied to popular computer vision library, OpenCV
 - Proved the \textit{bounded} equivalence of 41 implementations
 - Found inconsistencies in 10
 - Precision, associativity, distributivity, rounding, ...
- Future work may involve:
 - Inequalities
 - Interval arithmetic
 - Affine arithmetic
 - Floating point counterexamples
 - OpenCL
- \url{http://www.pcc.me.uk/~peter/klee-fp/}
 (or google klee-fp)
OpenCL

- Race detection
- OpenCL runtime library
- Uses Clang as OpenCL compiler
- Used to cross-check the following benchmarks:
 - AMD SDK – TemplateC
 - Parboil – mri-q, mri-fhd, cp
 - Bullet Physics Library – softbody
- Found memory bugs, implementation differences
SSE Intrinsic Lowering

- Total of 37 intrinsics supported
- Implemented via a lowering pass that translates the intrinsics into standard LLVM instructions

Input code:

```assembly
%res = call <8 x i16> @llvm.x86.sse2.pslli.w(
    <8 x i16> %arg, i32 1)
```

Output code:

```assembly
%1 = extractelement <8 x i16> %arg, i32 0
%2 = shl i16 %1, 1
%3 = insertelement <8 x i16> undef, i16 %2, i32 0
%4 = extractelement <8 x i16> %arg, i32 1
%5 = shl i16 %4, 1
%6 = insertelement <8 x i16> %3, i16 %5, i32 1
...
%22 = extractelement <8 x i16> %arg, i32 7
%23 = shl i16 %22, 1
%res = insertelement <8 x i16> %21, i16 %23, i32 7
```
OpenCV – Verified up to a certain size

<table>
<thead>
<tr>
<th>#</th>
<th>Bench</th>
<th>Algo</th>
<th>K</th>
<th>Fmt</th>
<th>Max Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>morph</td>
<td>dilate</td>
<td>R</td>
<td>u8</td>
<td>5 × 5</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>s16</td>
<td>16 × 16</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>u16</td>
<td>16 × 16</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>NR</td>
<td>u8</td>
<td>8 × 3</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>s16</td>
<td>16 × 16</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>u16</td>
<td>16 × 16</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>f32</td>
<td>15 × 15</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>erode</td>
<td>R</td>
<td>u8</td>
<td>4 × 4</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>s16</td>
<td>16 × 16</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>u16</td>
<td>16 × 16</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>NR</td>
<td>s16</td>
<td>16 × 16</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td>u16</td>
<td>16 × 16</td>
</tr>
<tr>
<td>13</td>
<td>pyramid</td>
<td></td>
<td></td>
<td>u8</td>
<td>8 × 2 → 4 × 1</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>nearest neighbor</td>
<td></td>
<td>u8</td>
<td>16 × 16</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>s16</td>
<td>16 × 16</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td>u16</td>
<td>16 × 16</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td>f32</td>
<td>16 × 16</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>linear</td>
<td></td>
<td>u8</td>
<td>16 × 16</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td>s16</td>
<td>16 × 16</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td>u16</td>
<td>16 × 16</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td>f32</td>
<td>16 × 16</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>cubic</td>
<td></td>
<td>u8</td>
<td>16 × 16</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td>s16</td>
<td>16 × 16</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td>u16</td>
<td>16 × 16</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td>f32</td>
<td>16 × 16</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>resize</td>
<td>linear</td>
<td>s16</td>
<td>8 × 8 → 8 × 8</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td>cubic</td>
<td>f32</td>
<td>8 × 8 → 8 × 8</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>silhouette</td>
<td></td>
<td>s16</td>
<td>8 × 8 → 8 × 8</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td>f32</td>
<td>8 × 8 → 8 × 8</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td>u8</td>
<td>16 × 16</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>thresh</td>
<td>BINARY</td>
<td>u8</td>
<td>16 × 16</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td>BINARY_INV</td>
<td>f32</td>
<td>16 × 16</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
<td>TRUNC</td>
<td>u8</td>
<td>16 × 16</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
<td>TOZERO</td>
<td>f32</td>
<td>16 × 16</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td>TOZERO_INV</td>
<td>u8</td>
<td>16 × 16</td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td>f32</td>
<td>16 × 16</td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16 × 16</td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16 × 16</td>
</tr>
<tr>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16 × 16</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>transff.43</td>
<td></td>
<td></td>
<td>16 × 16</td>
</tr>
<tr>
<td>41</td>
<td></td>
<td>transff.44</td>
<td></td>
<td></td>
<td>16 × 16</td>
</tr>
</tbody>
</table>
eigenval and harris

- Precision
- Associativity

- Scalar:

\[k \cdot (a + c) \cdot (a + c) \]

- SIMD:

\[
__m_m_m_u_l_p_s(__m_m_m_u_l_p_s(t, t), k4)
\]

\[k4 = (k, k, k, k) \]

\[t = (a_0 + c_0, a_1 + c_1, a_2 + c_2, a_3 + c_3) \]

- To be fixed in OpenCV
eigenval and harris

- Precision
- Associativity

- Scalar:

 \[((\text{float})k) \ast (a + c) \ast (a + c) \]

- SIMD:

 \[
 __m_m_u_l_p_s(__m_m_u_l_p_s(t, t), k4) \\
 k4 = (k, k, k, k) \\
 t = (a_0 + c_0, a_1 + c_1, a_2 + c_2, a_3 + c_3)
 \]

- To be fixed in OpenCV
eigenval and harris

- Precision
- Associativity

- Scalar:

\[((\text{float})k) \times ((a + c) \times (a + c))\]

- SIMD:

\[
\text{\textunderscore mm\textunderscore mul\textunderscore ps}(\text{\textunderscore mm\textunderscore mul\textunderscore ps}(t, t), k4)\]

\[
k4 = (k, k, k, k)\]

\[
t = (a_0 + c_0, a_1 + c_1, a_2 + c_2, a_3 + c_3)\]

- To be fixed in OpenCV