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Abstract

To improve data availability and resilienceMapReduce frame-
works use �le systems that replicate data uniformly. However,
analysis of job logs from a large production cluster shows
wide disparity in data popularity. Machines and racks storing
popular content become bottlenecks; thereby increasing the
completion times of jobs accessing this data even when there
are machines with spare cycles in the cluster. To address this
problem, we present Scarlett, a system that replicates blocks
based on their popularity. By accurately predicting �le popu-
larity and working within hard bounds on additional storage,
Scarlett causes minimal interference to running jobs. Trace
driven simulations and experiments in two popular MapRe-
duce frameworks (Hadoop and Dryad) show that Scarlett ef-
fectively alleviates hotspots and can speed up jobs by ..

Categories and Subject Descriptors D.. [Operating Sys-
tems]: File Systems Management–Distributed �le systems

General Terms Algorithms, Measurement, Performance

Keywords Datacenter Storage, Locality, Fairness, Replica-
tion

. Introduction

�e MapReduce framework has become the de facto stan-
dard for large scale data-intensive applications. MapReduce
based systems, such as Hadoop [Hadoop], Google’s MapRe-
duce [Dean ], and Dryad [Isard ] have been de-
ployed on very large clusters consisting of up to tens of thou-
sands of machines. �ese systems are used to process large
datasets (e.g., to build search indices or re�ne ad placement)
and also in contexts that need quick turn-around times (e.g.,
to render map tiles [Dean ]). �ese deployments rep-
resent a major investment. Improving the performance of
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MapReduce improves cluster e�ciency and provides a com-
petitive advantage to organizations by allowing them to opti-
mize and develop their products faster.

MapReduce jobs consist of a sequence of dependent
phases, where each phase is composed of multiple tasks that
run in parallel. Common phases include map, reduce and
join. Map tasks read data from the disk and send it to sub-
sequent phases. Since the data is distributed across machines
and the network capacity is limited, it is desirable to co-locate
computation with data. In particular, co-locating map tasks
with their input data is critical for job performance sincemap
tasks read the largest volume of data. All MapReduce based
systems go to great lengths to achieve data locality [Dean
, Isard , Zaharia ].

Unfortunately, it is not always possible to co-locate a task
with its input data.�e uniform data replication employed by
MapReduce �le systems (e.g., Google File System [Ghemawat
], Hadoop Distributed File System (HDFS) [HDFS]) is
o
en sub-optimal. Replicating each block on three di�erent
machines is not enough to avoid contention for slots on ma-
chines storing themore popular blocks. Simply increasing the
replication factor of the �le system is not a good solution, as
data access patterns vary widely in terms of the total number
of accesses, the number of concurrent accesses, and the access
rate over time. Our analysis of logs from a large production
Dryad cluster supportingMicroso
’s Bing, shows that the top
 of the most popular data is accessed over ten times more
than the bottom third of the data. Some data exhibits high
access concurrency, with  of the data being accessed by
at least three unique jobs at a time.

Contention for slots on machines storing popular data
may hurt job performance. If the number of jobs concur-
rently accessing a popular �le exceeds the number of replicas,
some of these jobs may have to access data remotely and/or
compete for the same replica. Using production traces, we es-
timate that as a direct consequence of contentions to popular
�les, the median duration of Dryad jobs increases by .

To avoid contentions and improve data locality, we design
a system, Scarlett, that replicates �les based on their access pat-
terns and spreads them out to avoid hotspots, while minimally
interfering with running jobs. To implement this approach it
is critical to accurately predict data popularity. If we don’t,



Dates Phases Jobs Data Network

(x103) (x103) (PB) (PB)

May , . . . .

Aug , . . . .

Sep , . . . .

Oct , . . . .

Nov , . . . .

Dec , . . . .

Table :Details of Dryad job logs collected fromMicroso


Bing’s cluster.

we may either create too few replicas thus failing to allevi-
ate contention, or create too many replicas thus wasting both
storage and network bandwidth. To guide replication, Scarlett
uses a combination of historical usage statistics, online pre-
dictors based on recent past, and information about the jobs
that have been submitted for execution. Tominimize interfer-
ence with jobs running in the cluster, Scarlett operates within
a storage budget, replicates data lazily, and uses compression
to trade processing time for network bandwidth. Finally, Scar-
lett bene�ts from spreading out the extra replicas, and hence
cluster load, on machines and racks that are lightly loaded.

We evaluate the bene�ts of Scarlett’s replication scheme
in the context of two popular MapReduce frameworks,
Hadoop [Hadoop] and Dryad [Isard ]. �ese frame-
works use di�erent approaches to deal with data contention.
While Hadoop may run a late-arriving task remotely, Dryad
aims to enforce locality by evicting the low priority tasks
upon the arrival of higher priority tasks [Isard ]. We
note that these approaches, as well as new proposals to im-
prove locality in the presence of contention by delaying the
tasks [Zaharia ], are orthogonal and complementary to
Scarlett. Indeed, while these schemes aim to minimize the ef-
fect of contentions, Scarlett seeks to avoid contentions alto-
gether. By providing more replicas, Scarlett makes it easier for
these schemes to co-locate data with computation and to al-
leviate contention to popular data.

We have deployed Scarlett on a -node Hadoop cluster,
and have replayed the workload traces fromMicroso
 Bing’s
datacenter. Scarlett improves data locality by , which re-
sults in a . reduction of the job completion times of
Hadoop jobs. In addition, by using extensive simulations,
we show that Scarlett reduces the number of evictions in the
Dryad cluster by  and speeds up the jobs by .. �is
represents  of the ideal speedup assuming no contention.
Finally, we show that Scarlett incurs low overhead, as it is able
to achieve near-ideal performance by altering replication fac-
tors only once in  hours, using less than  extra storage
space, and generating only . additional network tra�c.

�e rest of the paper is outlined as follows. In §, we quan-
tify the skew in popularity and its impact. § presents a so-
lution to cope with the popularity skew using adaptive and
e�cient replication of content. We look at how Dryad and
Hadoop are a�ected by popularity skew in §. § evaluates
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(b) Byte Accesses

Figure : File and Byte Popularity: CDFs of the total num-
bers of jobs that access each�le (or byte) aswell as thenum-

ber of concurrent accesses. �e x-axis has been truncated

to  for clarity, but goes up to .

the performance bene�ts of Scarlett. We discuss related work
in § and conclude in §.

. Patterns of Content Access in Production

We analyzed logs from a large production cluster that sup-
ports Microso
 Bing over a six month period in  (see
Table ). �e cluster so
ware, known as Cosmos, is a mod-
i�ed form of Dryad [Isard ] that runs jobs written in
Scope [Chaiken ]. �e dataset contains more than K
jobs that processed over  petabytes of data of which over
PB were moved on the network across racks.�e logs con-
tain details of individual tasks as well as dependencies across
phases (map, reduce, etc.). For each task, we record its start
and end times, the amount of data it reads and writes and the
location in the cluster where the task ran and where its inputs
were drawn from.We also obtain similar data at the granular-
ity of phases and jobs. �e cluster primarily ran production
jobs. Some of these are mining scripts that repeatedly ran as
new data arrives.

We examine the variation in popularity across �les and
how popularity changes over time. We also quantify the ef-
fects of popularity skew – hotspots in the cluster.

. Variation in Popularity

Since accesses to content are made by jobs, we examine pop-
ularity at the smallest granularity of content that can be ad-
dressed by them. We colloquially refer to this unit as a �le. In
practice, this smallest unit is a collection of many blocks and



Figure : Popularity of �les as a function of their sizes,
normalized to the largest �le; the largest �le has size .

�e columns denote the average value ( accesses, concur-

rence) of �les in each of the ten bins.

o
en has semantic meaning associated with it such as records
within a certain time range from a data stream.

�ere is a large variation among �les in their number of
accesses as well as in their number of concurrent accesses.
Figure a plots CDFs over �les of the total number of tasks
that access each �le and the maximum number of tasks that
concurrently access each �le. �e �gure shows that . of
the �les are accessed more than  times and . of the
�les are accessed more than three times concurrently. On the
other hand, a substantial fraction of the �les are accessed by
nomore than one task at a time () and nomore than once
over the entire duration of the dataset ().

Files vary in size, so to examine the byte popularity, Fig-
ure b weights each �le by its size. Compared to Figure a, we
see that both CDFs move to the right, indicating that more
fraction of the bytes are in �les that have more accesses. We
see that  of all data is accessed just once in the �ve-day
interval. On the other hand,  of the data is accessed more
than  times, i.e.,  of the data is x more popular than
roughly a third of the data. Recall that each block in the �le
system is replicated three times. �e �gure shows that 
of the data have at least three concurrent accesses, i.e., are
operating at brim, while  of them have more concurrent
accesses than the number of replicas.

We believe that popularity skew in MapReduce clusters
arises due to a few reasons. Due to abundantly available stor-
age, a lot of data is logged for potential future analysis but
only a small fraction is ever used. Some other datasets, how-
ever, correspond to production pipelines (e.g., process newly
crawled web content) and are always used. �eir popular-
ity spikes when the data is most fresh and decays with time.
�e sophistication of analysis and the number of distinct jobs
varies across these production datasets. In contrast to the
popularity skew observed in other contexts (e.g., of web and
peer-to-peer content), we see that the hottest content is not
as hot and that there is more moderately hot content. Likely
this is because the content consumer in this context (business
groups for research and production purposes) have wider at-
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Figure :Overlap in �les accessed across �ve days, for each

month listed inTable .With the�rst and�
hday as refer-

ences, we plot the fraction of bytes accessed on those days
that were also accessed in the subsequent and preceding

days, respectively.

tention spans, are more predictable, and less peaky as com-
pared to consumers of web and pp content.

When multiple tasks contend for a few replicas, the ma-
chines hosting the replicas become hotspots. Even if these
tasks ran elsewhere in the cluster, they compete for disk band-
width at the machines hosting the replicas. When the cluster
is highly utilized, a machine can have more than one popular
block. Due to collisions between tasks reading di�erent pop-
ular blocks, the e�ective number of replicas per block can be
fewer as some of the machines hosting its replicas are busy
serving other blocks.

We �nd high correlation between the total number of ac-
cesses and number of concurrent accesses with a Pearson’s
correlation factor of ., implying that either of these met-
rics is su�cient to capture �le popularity.

We also �nd that large �les are accessed more o
en. Fig-
ure  bins �les by their size, with the largest �le having a
normalized size of , and plots the average number of ac-
cesses (total and concurrent) to �les in each bin. Owing to
their disproportionately high access counts, focusing on just
the larger �les is likely to yield most of the bene�ts.

. Change in Popularity

Files change in popularity over time. Figure  plots the over-
lap in the set of �les accessed across �ve consecutive days for
each month listed in Table , with day- and day- as ref-
erences. We observe a strong day e�ect – only  of the
�les accessed on any given day are accessed in the next or the
previous days. Beyond this initial drop, �les exhibit a grad-
ual ascent and decline in popularity. Roughly  of the �les
accessed on a given day are also accessed four days before
or a
er. �e relatively stable popularity across days indicates
potential for prediction techniques that learn access patterns
over time to be e�ective.

On an hourly basis, however, access patterns exhibit not
only the gradual ascent and decline in popularity that we
see over days but also periodic bursts in popularity. Figure 
plots hourly overlap in the set of �les accessed, with two



Figure :Hourly overlap in the set of �les accessedwith two

sample reference hours (hour- and hour-). �e graph
on the top shows a gradual change while the bottom graph

shows periodically accessed �les.

illustrative reference hours. �e �gure on top shows gradual
variation while the bottom �gure shows that some sets of �les
are accessed in bursts. We conjecture that the di�erence is
due to the types of �les involved – the hour on the top likely
consists of a time-sensitive set of �les used by many di�erent
users or groups, so their popularity decays faster and more
smoothly, while the bottom hour likely consists of a set of
�les used by fewer but more frequent users explaining the
periodic bursts.

. E�ect of Popularity Skew: Hotspots

When more tasks want to run simultaneously on a machine
than that machine can support, we will say a contention event
has happened.MapReduce frameworks vary in how they deal
with contention events. Some queue up tasks, others give up
on locality and execute tasks elsewhere in the cluster and
some others evict the less preferred tasks. Others adopt a
combination approach – make tasks wait a bit before falling
back and running them elsewhere. Regardless of the coping
mechanism, contention events slow down the job and waste
cluster resources.

Figure  plots a CDF of how contentions are distributed
across the machines in the cluster.�e �gure shows that 
of contentions are concentrated on a small fraction of ma-
chines (less than ( 1

6
)th) in the cluster. Across periods of low

and high cluster utilization (AM and PM respectively),
the pattern of hotspots is similar.

We attribute these hotspots to skew in popularity of �les.
Hotspots occur on machines containing replicas of �les that
have many concurrent accesses. Further, current placement
schemes are agnostic to correlations in popularity, they do
not avoid co-locating popular �les, and hence increase the
chance of contentions.

. Summary

From analysis of production logs, we take away these lessons
for the design of Scarlett:

Figure : Hotspots: One-sixth of the machines account for

half the contentions in the cluster.

. �e number of concurrent accesses is a su�cient metric
to capture popularity of �les.

. Large �les contribute to most accesses in the cluster, so
reducing contention for such �les improves overall per-
formance.

. Recent logs are a good indicator of future access patterns.

. Hotspots in the cluster can be smoothened via appropriate
placement of �les.

. Scarlett: System Design

We make the following two design choices. First, Scarlett
considers replicating content at the smallest granularity at
which jobs can address content. Recall that we call this a �le.
Scarlett does so because a job will access all blocks or none
in a �le. Even if some blocks in a �le have more replicas,
the block(s) with the fewest replicas become the bottleneck,
i.e., tasks in the job that access these hot blocks will strag-
gle [Ananthanarayanan ] and hold back the job. Second,
Scarlett adopts a proactive replication scheme, i.e., replicates
�les based on predicted popularity. While we considered the
reactive alternative of simply caching data when tasks exe-
cuted non-locally (thereby increasing the replication factor
of hot data), we discarded it because it does not work for
frameworks that cope with contention by other means (e.g.,
by queuing or evicting low priority tasks). In addition, proac-
tively replicating at the granularity of �les is simpler to imple-
ment; it keeps improvements to the storage layer independent
of the task execution logic.

Scarlett captures the popularity of �les and uses that to in-
crease the replication factor of o
-accessed �les, while avoid-
ing hotspots in the cluster and causing minimal interference
to the cross-rack network tra�c of jobs. To do so, Scarlett
computes a replication factor rf for each �le that is pro-
portional to its popularity (§.) while remaining within
a budget on extra storage due to additional replicas. Scar-
lett smooths out placement of replicas across machines in
the cluster so that the expected load on each machine (and
rack) is uniform (§.). Finally, Scarlett uses compression and
memoization to reduce the cost of creating replicas (§.).



Used Budget, Bused ← 0
F ← Set of �les sorted in descending order of size

Set rf ← 3 ∀f ∈ F ⊲ Base Replication

for �le f ∈ F do

rf ← max(cf + δ, 3) ⊲ Increase rf to cf + δ

Bused ← Bused + fsize · (rf − 3)
break if Bused ≥ B

end for

Pseudocode : Scarlett computes the �le replication fac-
tor rf based on their popularity and budget B. cf is the

observed number of concurrent accesses. Here �les with

larger size have a strictly higher priority of getting their
desired number of replicas.

Recall that current �le systems [Ghemawat , HDFS]
divide �les into blocks and uniformly replicate each block
three times for reliability. Two replicas are placed on ma-
chines connected to the same rack switch, and the third is on
a di�erent rack. Placing more replicas within a rack allows
tasks to stay within their desired rack. Datacenter topolo-
gies are such that there is more bandwidth within a rack
than across racks [Kandula ]. �e third replica ensures
data availability despite rack-wide failures. Our analysis in §
shows sizable room for improvement over this policy of uni-
form replication.

. Computing File Replication Factor

Scarlett replicates data at the granularity of �les. For every �le,
Scarlett maintains a count of the maximum number of con-
current accesses (cf ) in a learningwindow of length TL. Once
every rearrangement period, TR, Scarlett computes appropri-
ate replication factors for all the �les. By default, TL = 24
hours and TR = 12 hours. �e choice of these values is
guided by observations in the production logs that show rela-
tive stability in popularity during a day. It also indicates Scar-
lett’s preference to conservatively replicate �les that have a
consistent skew in popularity over long periods.

Scarlett chooses to replicate �les proportional to their ex-
pected usage cf . �e intuition here is that the expected load
at a machine due to each replica that it stores be constant
– the load for content that is more popular is distributed
across a proportional number of replicas. To provide a cush-
ion against under-estimates, Scarlett creates δ more replicas.
By default δ = 1. Scarlett lower bounds the replication by
three, so that data locality is at least as good as with the
current �le systems. Hence the desired replication factor is
max(cf + δ, 3).

Scarlett operates within a �xed budget B on the storage
used by extra replicas. We note that storage while available is
not a free resource, production clusters routinely compress
data before storing to lower their usage. How should this
budget be apportioned among the various �les?

Scarlett employs two approaches. In the priority approach,
Scarlett traverses the �les in descending order of their size and

Used Budget, Bused ← 0
F ← Set of �les sorted in descending order of size

Set rf ← 3 ∀f ∈ F ⊲ Base Replication

while Bused < B do

for �le f ∈ F do

if rf < cf + δ then

rf ← rf + 1 ⊲ Increase rf by 1
Bused ← Bused + fsize

break if Bused ≥ B

end if

end for

end while

Pseudocode : Round-robin distribution of the replication

budget B among the set of �les F .

increases each �le’s replication factor up to the desired value
of cf + δ until it runs out of budget. �e intuition here is
that since �les with larger size are accessed more o
en (see
Figure ) and also have more tasks working on them, it is
better to spend the limited budget for replication on those
�les. Pseudocode  summarizes this approach.Wewould like
to emphasize that while looking at �les sorted by descending
order of size is suited for our environment, the design of
Scarlett allows any ordering to be plugged in.

�e second round-robin approach alleviates the concern
that most of the budget can be spent on just a few �les. Hence,
in this approach, Scarlett increases the replication factor of
each �le by at most 1 in each iteration and iterates over the
�les until it runs out of budget. Pseudocode  depicts this ap-
proach. �e round-robin approach provides improvements
tomanymore �les while the priority approach focuses on just
a few �les but can improve their accesses by a larger amount.
We evaluate both distribution approaches for di�erent values
of the budget in §.

�e following desirable properties follow from Scarlett’s
strategy to choose di�erent replication factors for �les:

• Files that are accessed more frequently have more replicas
to smooth their load over.

• Together, δ, TR and TL track changes in �le popularity
while being robust to short-lived e�ects.

• Choosing appropriate values for the budget on extra
storage B and the period at which replication factors
change TR can limit the impact of Scarlett on the cluster.

. Smooth Placement of Replicas

We just saw which �les are worthwhile to replicate but where
to place these replicas? A machine that contains blocks from
many popular �les will become a hotspot, even though as
shown above, there may be enough replicas for each block
such that the per-block load is roughly uniform. Here, we
show how Scarlett smooths the load across machines.

In current and future hardware SKUs, reading from
the local disk is comparable to reading within the rack,



for �le f in F do

if rf > rdesired
f then

Delete Replicas ⊲ De-replicate

Update lm accordingly

end if

end for

for �le f in F do

while rf < rdesired
f do

for blocks b ∈ f do

m∗

← arg min(lm)∀machinesm

Replicate(b) at m∗

lm∗ ← lm∗ +
cf

rf
⊲ Update load

end for

rf ← rf + 1
end while

end for

Pseudocode : Replicating the set of �les F with current

replication factors rf to the desired replication factors

rdesired
f . lm is the current expected load at each machine
due to the replicas it stores.

since top-of-rack switches have enough backplane band-
width to support all intra-rack transfers. Reading across racks
however continues to remain costly due to network over-
subscription [Kandula ]. Hence, Scarlett spreads replicas
of a block over as many racks as possible to provide many
reasonable locations for placing the task.

Scarlett’s placement of replicas rests on this principle: place
the desired number of replicas of a block on as many distinct
machines and racks as possible while ensuring that the ex-
pected load is uniform across all machines and racks.

A strawman approach to achieve these goals would begin
with random circular permutations of racks and machines
within each rack. It would place the �rst replica at the �rst
machine on the �rst rack. Advancing the rack permutation
would ensure that the next replica is placed on a di�erent
rack. Advancing to the next machine in this rack ensures that
when this rack next gets a replica, i.e., a
er all racks have
taken a turn, that replica will be placed on a di�erent ma-
chine in the rack. It is easy to see that this approach smooths
out the replicas across machines and racks. �e trouble with
this approach, however, is that even one change in the replica-
tion factor changes the entire placement leading to needless
shu�ing of replicas across machines. Such shu�ing wastes
time and cross-rack network bandwidth.

Scarlett minimizes the number of replicas shu�ed when
replication factors change while satisfying the objective of
smooth placement in the following manner. It maintains a
load factor for each machine, lm. �e load factor for each
rack, lr, is the sum of load factors of machines in the rack.
Each replica is placed on the the rack with the least load
and the machine with the least load in that rack. Placing
a replica increases both these factors by the expected load
due to that replica (=

cf

rf
). �e intuition is to keep track of

the current load via the load factor, and make the desired
changes in replicas (increase or decrease) such that the lightly
loaded machines and racks shoulder more load. In practice,
Scarlett uses a slight fuzz factor to ensure that replicas are
spread overmany distinct racks andmachines.�is approach
is motivated by the De�cit Round Robin scheme [Shreedhar
] that employs a similar technique to spread load across
multiple queues in arbitrary proportions.

Pseudocode  shows how, once every TR, a
er obtaining
a new set of replication factors rdesired

f , Scarlett places those
replicas. Files whose replication factors have to be reduced
are processed �rst to get an updated view of the load factors
of racks and machines. We defer how replicas are actually
created and deleted to the next subsection. Traversing the list
of �les and its blocks, Scarlett places each replica on the next
lightly loaded machine and rack. Replicas of the same block
are spread over as many machines and racks as possible.

. Creating Replicas E�ciently

Replication of �les causes data movement over already over-
subscribed cross-rack links [Kandula ]. �is interferes
with the performance of tasks, especially those of network-
intensive phases like reduce and join. A skew in the band-
width utilization of racks leads to tasks that read data over
them lagging behind the other tasks in their phase, eventually
in�ating job completion times [Ananthanarayanan ].
While our policy of placing one replica per rackmakes cross-
rack data movement inevitable during replication, we aim to
minimize it. �e approximation algorithm in Pseudocode 
takes a �rst stab by retaining the location of existing blocks.
As a next step, we now reduce the interference caused due to
replication tra�c. In addition to replication tra�c running
at lower priority compared to network �ows of tasks, we em-
ploy two techniques that complement each other – (a) equally
spread replication tra�c across all uplinks of racks, and (b)
reduce the volume of replication tra�c by trading network
usage for computation using compression of data.

.. While Replicating, Read FromMany Sources

We adopt the following simple approach to spread replica-
tion tra�c equally across all the racks. Suppose the num-
ber of replicas increases from rold to rnew . �e old replicas
equally distribute the load of creating new replicas among
themselves. Each old replica is a source for ⌈ rnew−rold

rold
⌉ new

replicas. In the case of rnew

rold
≤ 2, each rack with old repli-

cas will have only one copy of the block �owing over their
uplinks at a time.

When the increase in number of replicas is greater than
, Scarlett starts from rold and increases the replication fac-
tor in steps of two, thereby doubling the number of sources
in every step. �is strategy ensures that no more than a log-
arithmic number of steps are required to complete the repli-
cation while also keeping the per-link cost for each block be-
ing replicated a constant independent of the number of new
replicas being created.
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Figure : Scheduling of tasks, and the di�erent approaches
to deal with con�ict for slots due to data locality. Scarlett
tries to shi
 the focus to the "YES" part of the decision

process by preferentially replicating popular content.

.. Compress Data Before Replicating

Recent trends in datacenter hardware and data patterns point
to favorable conditions for data compression techniques.
�ese techniques tradeo� computational overhead for net-
work bandwidth [Skibinski ]. However, the trend of
multiple cores on servers presents cores that can be devoted
for compression/decompression purposes. Also, the primary
driver of MapReduce jobs are large text data blobs (e.g., web
crawls) [Hadoop Apps] which can be highly compressed.

Libraries for data compression are already used by
MapReduce frameworks. Hadoop, the open-source version
of MapReduce, includes two compression options [Chen
]. �e gzip codec implements the DEFLATE algorithm,
a combination of Hu�man encoding and Lempel-Ziv 
(LZ).Other popular variants of Lempel-Ziv include LZMA
and LZO. Dryad supports similar schemes. Since replication
of �les is not in the critical path of job executions, our la-
tency constraints are not rigid. With the goal of minimizing
network tra�c, we employ compression schemes with high-
est reduction factors albeit at the expense of computational
overhead for compression and decompression. We present
benchmarks of a few compression schemes (e.g., the PPMVC
compression scheme [Skibinski ]) as well as the advan-
tages of compressing replication data in §.

.. Lazy Deletion

Scarlett reclaims space from deleted replicas lazily, i.e., by
overwriting it when another block or replica needs to be
written to disk. By doing so, the cost to delete is negligible.
Deleted replicas of a block are removed from the list of avail-
able replicas.

. Case Studies of Frameworks

In this section, we describe the problems caused due to
contention events in two popular MapReduce frameworks,

Figure :�e probability of �nding a replica on a free ma-

chine for di�erent values of �le replication factor and clus-
ter utilization.

Dryad [Isard ] and Hadoop [Hadoop]. �e impact of
hotspots on a framework depends on how it copes with con-
tention. As a prelude to evaluating Scarlett, we analyze how
hotspots impact these frameworks, quantify the magnitude
of problems and the potential gains from avoiding hotspots.

�ere is a growing trend towards sharing of clusters for
economic bene�ts (e.g., as mentioned in [Cloud Bene�ts]).
�is raises questions of resource allocation and MapReduce
job managers support weighted distribution of resources be-
tween the di�erent jobs [Isard ], re�ecting the relative
importance of jobs. Each job is entitled to use a legitimate
quota of slots. However, all frameworks allow jobs to use
more than their legitimate share subject to availability, called
bonus slots.�is reduces idling of resources and improves the
overall throughput of the cluster.

A natural question that arises is, how to deal with a task
that cannot run at the machine(s) that it prefers to run at? Job
managers confront this question more frequently for tasks
with data locality constraints. Despite the presence of free
slots, locality constraints lead to higher contention for cer-
tain machines (§.). Many solutions to deal with contention
are in use. First, less preferred tasks (e.g., those running in
bonus slots) can be evicted to make way [Isard ; ].
Second, the newly arriving task can be forced to run at a sub-
optimal location in the cluster [Hadoop, Isard , Zaharia
].�ird, one of the contending tasks can be paused until
contention passes (e.g., wait in a queue) [Isard ]. In prac-
tice, frameworks use a combination of these individual ap-
proaches, such as waiting for a bounded amount of time be-
fore evicting or running elsewhere in the cluster. See Figure 
for a summary. Each of these solutions are suited to speci�c
environments depending on the service-level agreement con-
straints, duration of tasks, congestion of network links and
popularity skew of input data (described in detail in §).

Note that Scarlett provides orthogonal bene�ts. Scarlett
minimizes the occurrence of such contentions in the �rst
place by replicating the popular �les thereby ensuring that
enough machines with replicas are available.
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(c)CDF of evictor tasks

Figure : Correlation between �le characteristics and eviction of tasks. We plot only the top  of the eviction-causing
�les for clarity. Popular �les directly correlate with more evictions ((a) and (b)). �e cumulative number of evictor tasks

is plotted in (c). Large �les also correlate with evictions – the  of the �les in this �gure account for  of the overall

storage, and  of overall evictions.

. Bene�ts from selective replication

We present a simple analysis that demonstrates the intuition
behind how increased replication reduces contention. With
m machines in the cluster, k of which are available for a task
to run, the probability of �nding one of r replicas of a �le
on the available machines is 1 − (1 − k

m
)r . �is probability

increases with the replication factor r, and decreases with
cluster utilization (1 − k

m
).

Figure  plots the results of a numerical analysis to under-
stand how this probability changes with replication factors
and cluster utilizations. At a cluster utilization of , with
the current replication factor (r=), we see that the probabil-
ity of �nding a replica among the available machines is less
than half. Doubling the replication factor raises the probabil-
ity to over . Even at higher utilizations of , a �le with
 replicas has a  chance of �nding a replica on a freema-
chine. By replicating �les proportionally to their number of
concurrent accesses, Scarlett improves the chances of �nding
a replica on a free machine.

As described earlier, Scarlett’s replication reduces con-
tention and provides more opportunities for map tasks to at-
tain machine or rack locality. Storing more replicas of pop-
ular �les provides more machine-local slots (§.) while
spreading out replicas across racks and preventing concen-
tration of popularity (§.) facilitates rack locality when ma-
chine locality is not achievable.

. Evictions in Dryad

Dryad’s [Isard ] scheduler pre-emptively evicts a bonus
task when a legitimate task makes a request for its slot. We
examine an early version of the Cosmos cluster that does
so. Here we quantify the ine�ciencies due to such evictions.
In this version, bonus tasks were given a s notice period
before being evicted. We refer to the legitimate and bonus
tasks as evictor and evicted tasks respectively.

Likelihood of Evictions: Of all tasks that began running on
the cluster, . of them end up being evicted. An over-
whelming majority of the evicted tasks (.) and the evic-
tor tasks () are from map phases. �ese tasks could have
executed elsewhere were more replicas available. Reclaiming
resources used by killed tasks will reduce the load on the clus-
ter. As a second-order e�ect, we see from Figure , that the
probability of �nding a replica on the available machines im-
proves with lower utilization. In addition, the spare resources
can be used for other performance enhancers, such as spec-
ulative executions to combat outliers.

Correlation of evictor tasks and �le popularity: Figure 
explores the correlation between evictor tasks and the char-
acteristics of the input �les they work on – access count, con-
currency and size. For clarity, we plot only the top  �les
contributing to evictions, out of a total of  �les (or~)
– these account for  of the evictor tasks. Asmarked in the
�gure, we see that the �les that contribute the most to evictor
tasks are directly correlated with popularity – they have high
total and concurrent numbers of accesses (Figures a and b).
High concurrency directly leads to contention and eviction.
A larger number of accesses implies that more tasks run over-
all on themachines containing these �les and hence there is a
greater probability of evictions. In addition, the worst sources
of evictor tasks also are the bigger �les. �e  of the �les
plotted in Figure  contribute to a disproportionate  of
the overall storage size and account for  of all evictions
(Figure c).�is validates our design choice in §. where we
order the �les in descending order of size before distributing
the replication budget.

In�ation of Job Durations: Figure  plots the improvement
in completion times for the jobs in the cluster in an ideal case
wherein all the evicted tasks execute to completion (i.e., do
not have to be re-executed) and the evictor tasks achieve lo-
cality.�epotentialmedian and third-quartile improvements
are . and . respectively. In large production clus-



Figure : Ideal improvement in job completion times if
eviction of tasks did not happen.

ters, this translates tomillions of dollars in savings. Sincemap
tasks dominate among the evictees, we see that providing this
hypothetical improvement (locality without evictions) to just
the map tasks is nearly the same (median of .) as when
all evictions are avoided.

�at evictions happen even in the presence of idle com-
putational resources points to evictions being primarily due
to contention for popular data. Our results in § show that
Scarlett manages to reduce evictions by  in Dryad jobs.

. Loss of Locality in Hadoop

Hadoop’s policy of dealing with contention for slots is to force
the new task to forfeit locality. Delay Scheduling [Zaharia
] improves on this default policy by making tasks wait
brie�y before deciding to cede locality. �e data from Face-
book’s Hadoop logs in [Zaharia ] shows that small jobs
(which constitute  of all Hadoop jobs) achieve only 
node locality and  rack locality.

Hadoop does not use evictions despite a few reasons in
their favor. First, eviction can be more e�cient than running
the new task elsewhere, for example, if the ongoing task has
just started and some other machines on the cluster that the
task can run at are available. Second, Quincy [Isard ]
shows that if bonus tasks were not pre-empted, the cluster’s
resource allocation can be signi�cantly far away from the de-
sired value causing jobs to be starved and experience unpre-
dictable lags. Our evaluation in § shows a  increase in
locality formap tasks inHadoop jobs, resulting in three quar-
ters of the jobs speeding up bymore than .Half of the jobs
improve by at least . Note that these observed gains due
to Scarlett are larger for Hadoop than for Dryad.

. Evaluation

We�rst present the evaluation set-up and then proceed to the
performance bene�ts due to Scarlett.

. Methodology

We evaluate the bene�ts of Scarlett using an implementation
and deployment of Hadoop jobs (§.) as well as extensive
simulation of Dryad jobs (§.) described in Table . In ad-
dition, we also check the sensitivity of Scarlett’s performance

to the various algorithmic parameters (§.), budget size and
distribution (§.), and compression techniques (§.).

Implementation: We implement Scarlett by extending the
Hadoop Distributed File System (HDFS) [HDFS]. Our mod-
ules in HDFS log the access counters for each �le and ap-
propriately modify the replication factors of �les using the
adaptive learning algorithm described in §.. Note that this
change is transparent to the job scheduler.

Hadoop Workload: Our workload of Hadoop jobs is con-
structed out of the traces mentioned in Table . We use the
same inter-arrival times and input �les for jobs, thereby pre-
serving the load experienced by the cluster as well as the ac-
cess patterns of �les. However the �le sizes are appropriately
scaled down to re�ect the reduced cluster size. We replace
the Dryad job scripts by Hadoop programs, randomly cho-
sen between wordcount, group by, sort and grep. We believe
this approximation is reasonable as the thrust of our work is
largely on the advantage of reading data locally as opposed
to the speci�c computation. We replay a  hour trace from
Table . We test our implementation on a -node cluster
in the DETER testbed [Benzel ] each with GBmemory
and .GHz Xeon processors.

Trace-driven Dryad Simulator: We replay the production
Dryad traces shown in Table  with detailed simulators that
mimic job operation. �e simulator is extensive in that it
mimics various aspects of tasks including distribution of du-
ration and amount of input data read/written, locality of in-
put data based on the placement of replicas, probability of
failure, stragglers and recomputations [Ananthanarayanan
], and cluster characteristics of when computation slots
open up. It also takes evictions into account by verifying if a
replica can be found in the unutilized machines.

Metrics:Our primary �gure ofmerit is the reduction in com-
pletion time of jobs where,

Reduction =

Current − Modified

Current

Weweight the jobs by their duration and use CDFs to present
our metric. Weighting jobs by their duration helps di�eren-
tiate the impact of Scarlett on larger jobs versus smaller jobs.
Larger jobs containmore tasks and utilizemore cluster cycles,
therefore an improvement in a larger job would be as a result
of more tasks bene�ting. We also consider improvements in
locality, de�ned as the number of tasks that are able to run on
the same machines that have their input data.

We �rst present a summary of our results:

• Scarlett’s replication speeds up median Hadoop jobs by
. in our cluster, and median Dryad jobs by .
( of ideal) in our trace-driven simulations.

• Revisiting replication factors and placement of �les once
in  hours is su�cient, thereby limiting replication over-
head.



Figure : Improvement in data locality for tasks leads to

median and third-quartile improvements of . and
. in Hadoop job completion times.

• Performance under a storage budget of  is comparable
to an unconstrained replication.

• Replication increases network overhead by only  due
to e�ective data compression.

. Does data locality improve in Hadoop?

Hadoop’s reaction to a request for a slot that is currently
in use is to forfeit locality a
er a brief wait (See §.). We
measure the improvement in completion times due to higher
data locality for Hadoop jobs in our cluster using Scarlett over
the baseline of HDFS that replicates each �le thrice. We set
δ = 1, let TL range from  to  hours, set storage budget
B = 10% and rearrange once at the beginning of the ten
hour run (TR ≥ 10 hours).

Figure  marks the reduction in completion times of 
jobs. We see that completion times improve by . and
. at the median and th percentile respectively. �is is
explained by the increase in fraction ofmap tasks that achieve
locality. �e fraction of map tasks that achieve locality im-
proves from  with vanilla HDFS to  with Scarlett, in
other words a  improvement.

. Is eviction of tasks prevented in Dryad?

As described in §., replicating popular �les reduces the
necessity for eviction and wastage of work, in turn leading
to jobs completing faster. �e ideal improvement when all
evictions by map tasks are avoided is . at median, and
Scarlett produces a . median improvement. Here, we set
δ = 1, TR = 12 hours, let TL range from  to  hours,
and set storage budget B = 10%. Figure  compares the
ideal case with our replication scheme where we obtain 
of ideal performance at median. �e ideal case contains no
evictions and at the same time assumes that all evictor tasks
achieve locality.

A closer look reveals that by replicating popular content,
Scarlett avoids  of all evictions, i.e., the evictor tasks could
be run on another machine containing a replica of their in-
put. Note that this number goes up to , when we con-
sider evictions by tasks operating on the top hundred popu-

Figure : Increased replication reduces eviction of tasks
and achieves a median improvement of . in job com-

pletion times, or  of ideal.

lar �les, con�rming the design choice in Scarlett to focus on
themore popular �les. Increasing the storage budget provides
marginal (but smaller improvements) – with an increased
storage budget of  Scarlett prevents  of all evictions.

. Sensitivity Analysis

We now analyze the sensitivity of Scarlett to the parameters
of our learning algorithm– rearrangement window, TR, and
the cushion for replication, δ. TR decides how o
en data is
moved around, potentially impacting network performance
of currently running jobs. δ results in greater storage occu-
pancy and more replication tra�c.

Figure a compares the improvement in Dryad job com-
pletion times for di�erent rearrangementwindows, i.e.,TR =
{1, 12, 24}hours. Interestingly, we see that TR has little e�ect
on the performance of jobs. Re-evaluating replication deci-
sions once a day is only marginally worse than doing it once
every hour. �is points to Scarlett’s minimal interference on
running jobs. It also points to the fact that most of the gains
in the observed Dryad workload accrue from replicating �les
that are consistently popular over long periods. Results from
our Hadoop deployment are similar. For TR values of , 
and  hours, the median improvements are ., .
and . respectively. By default, we set TR to  hours, or
rearrange �les twice a day.

�e replication allowance δ impacts performance. Chang-
ing δ from  to  improves performance substantially, but
larger values of δ have lower marginal increases. Figure b
shows that for δ values of ,  and , the median reductions
in Dryad job durations are ., . and .. Note the
improvement of  as δ changes from  to . Likewise, our
Hadoop jobs see a  increase from . to . in me-
dian improvement in completion time as we shi
 δ from 
to . We believe this is because operating at the brim with a
replication factor equal to the observed number of concur-
rent accesses is inferior to having a cushion, even if that were
only one extra replica.

Figure  shows the cost of increasing δ. Values of storage
overhead change upon replication, i.e., once every TR=



(a)Rearrangement Window (TR)

(b) Replication Allowance (δ)

Figure : Sensitivity Analysis of TR and δ. Rearranging
�les once or twice a day is only marginally worse than

doing it at the end of every hour. We set TR as  hours
in our system.On the other hand, δ plays a vital role in the

e�ectiveness of Scarlett’s replication scheme.

hours. δ = 2 results in a  increase in storage, almost
double of the overhead for δ = 1. Combined with the fact
that we see the most improvement whenmoving from δ from
 to , we �x δ as .

. Storage Budget for Replication

Figure a plots reduction in Dryad job completion times
for various budget values, measured with respect to the base-
line storage of three replicas per �le. Here, we use the priority
distribution, i.e., larger �les are preferentially replicated over
smaller �les within the budget. A budget of  improves
performance substantially (by ) over a  limit. As ex-
pected, the lower budget reduces storage footprint at the ex-
pense of fewer �les being replicated or a smaller replication
factor for some �les.�emarginal improvement is smaller as
the budget increases to . �is indicates that most of the
value from replication accrues quickly, i.e., at small replica-
tion factors for �les. Conversations with datacenter operators
con�rm that 10% is a reasonable increase in storage use.

Note however that the improvement going from a budget
of  to a budget of  is smaller than when going from 
to . �is is likely because the distribution policy used by
Scarlett is simple and greedy but not optimal. Likely, there are
some �les, replicating which yields signi�cantly more bene�t
per unit extra storage, that Scarlett fails to replicate when

Figure : Increasing the value of the replication allowance
(δ) leads to Scarlett using more storage space. We �x δ as .

budgets are small. However, these ine�ciences go away with
a slightly larger budget value of , and we choose to persist
with the simpler algorithm.

Hadoop jobs, fromFigure b, exhibit a similar trend.�e
increase in median completion time when moving from a
budget of  to  is much higher (). �is indicates
that how Hadoop deals with contentions (by moving tasks
elsewhere) is likely more sensitive to the loss of locality when
popular �les are not replicated.

Priority vs. Round-robin Distribution: Recall from § that
the replication budget can be spread among the �les either in
a priority fashion – iterate through the �les in decreasing or-
der of size, or distributed iteratively in a round-robinmanner.
Figure a plots the performance of Dryad jobs with respect
to both these allocations. For a replication budget of , we
observe that the priority allocation gives a median improve-
ment of . as opposed to . with round-robin alloca-
tion, or a  di�erence.�is is explained by our causal anal-
ysis in Figure  and Figure  that shows that large �les account
for a disproportionate fraction of the evicting tasks while also
experiencing high levels of concurrent accesses. Hence, giv-
ing them a greater share of the replication budget helps avoid
more evictions. Hadoop jobs exhibit a greater di�erence of
 between the two distributions showing greater sensitiv-
ity to loss of locality (Figure b).

However, the di�erence in advantage between the two dis-
tributions are negligible at small replication budgets. As we
see in Figure a, the limited opportunity to replicate results
in there being very little to choose between the two distribu-
tion strategies.

. Increase in Network Tra�c

For δ = 1, the maximum increase in uncompressed network
tra�c during rearrangement of replicas is . Using the
PPMVC compression scheme [Skibinski ], this reduces
to an acceptable overhead of ..

We also present micro-benchmarks of various com-
pression techniques. Table  lists the compression and
de-compression speeds as well as the compression ratios
achieved by a few compression algorithms [Skibinski ;
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Figure :Lowbudgets lead to little fruitful replication.On
the other hand, as the graph below shows, budgets cease to

matter beyond a limit.

Scheme �roughput (Mbps) Compression

Compress De-compress Factor

gzip   -X

bzip . . -X

LZMA .  -X

PPMVC . . -X

Table : Comparison of the computational overhead and
compression factors of compression schemes.

]. �ere is a clear trend of more computational over-
head providing heavier compression. Given the �exible la-
tency constraints for replication and low bandwidth across
racks, Scarlett leans toward the choice that results in the least
load on the network.

. RelatedWork

�e principle of “replication and placement” of popular data
has been employed in di�erent contexts in prior work. Our
contributions are to (i) identify (and quantify) the content
popularity skew in the MapReduce scenario using produc-
tion traces, (ii) show how the skew causes contention in two
kinds of MapReduce systems (ceding locality for Hadoop vs.
eviction for Dryad), and (iii) design solutions that operate
under a storage budget for large data volumes common in
MapReduce systems. While we have evaluated Scarlett pri-
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Figure : Priority distribution of the replication budget

among the �les improves the median completion time

more than round-robin distribution.

marily for map tasks, we believe the principle of proactively
replicating content based on its expected concurrent access
can be extended to intermediate data too (e.g., as in Nec-
tar [Gunda ] that stores intermediate data across jobs).

Much recent work focuses on the tussle between data lo-
cality and fairness in MapReduce frameworks. Complemen-
tary to Scarlett, Quincy [Isard ] arbitrates between multi-
ple jobs. Delay Scheduling [Zaharia ] on the other hand
supports temporary relaxation of fairness while tasks wait to
attain locality. �is can alleviate contention by steering tasks
away from a hotspot. It however makes some assumptions
that do not hold universally: (a) task durations are short and
bimodal, and (b) one task queue per cluster (as in Hadoop).
In the Cosmos clusters at Microso
, tasks are longer (median
of s as opposed to the s in [Zaharia ]) to amortize
overheads in maintaining task-level state at the job manager,
copying task binaries etc. Task lengths are also more vari-
able in Dryad owing to diversity in types of phases. Finally,
Dryad uses one task-queue permachine, further reducing the
load at the job scheduler to improve scalability. Scarlett does
not rely on these assumptions and addresses the root cause
of contention by identifying and replicating popular content.
Furthermore, Scarlett can be bene�cially combined with both
Delay Scheduling and Quincy.

�e idea of replicating content in accordance to popular-
ity for alleviating hotspots has been used in the past. Caching



popular data and placing it closer to the application is used
in various content distribution networks (CDNs) [Akamai,
Coral CDN] in the Internet. Beehive [Ramasubramanian
] proactively replicates popular data in a DHT to pro-
vide constant time look-ups in peer-to-peer overlays. Finally,
dynamic placement of popular data has also been recently ex-
plored in the context of energy e�ciency [Verma ]. To
the best of our knowledge, ours is the �rstwork to understand
popularity skew and explore the bene�ts of dynamic data
replication inMapReduce clusters.�e context of our work is
di�erent as �le access patterns and sizes inMapReduce signif-
icantly di�er fromweb access patterns. It di�ers fromBeehive
due to the di�erent application semantics. While Beehive is
optimized for lookups, Scarlett aims at parallel computation
frameworks like MapReduce. Further, our main goal is to in-
crease performance rather than be energy e�cient, so we aim
for spreading data across nodes as opposed to compaction.

Bursts in data center workloads o
en result in peak I/O
request rates that are over an order of magnitude higher than
average load [Narayanan ]. A common approach to deal
with such bursts is to identify overloaded nodes and o�oad
some of their work to less utilized nodes [Appavoo ,
Narayanan ]. In contrast, our approach is geared towards
a read-heavy workload (unlike [Narayanan ]), common
to MapReduce clusters. While Dynamo [Appavoo ] re-
actively migrates (not replicate) popular data, we replicate
and do so proactively, techniques more suited to our setting.
Recent work [Belaramani , Stribling ] on providing
semantic context to the �le system can be leveraged to imple-
ment our replication policies.

A wide variety of work has also been done in the area of
predictive pre-fetching of popular �les based on historical ac-
cess patterns [Curewitz ] as well as elaborate program
and user based �le prediction models [Yeh ]. However,
these are in the context of individual systems and deal with
small amounts of data unlike our setting with petabytes of
distributed storage, the replication and transfer of which re-
quire strict storage/network constraints.

Some prior work on dynamic database replication policies
[Soundararajan ] is very similar in �avor to ours. How-
ever, these policies are reactive in reference to application la-
tency requirements. Our work, on the other hand, focuses on
designing proactive replication policies.

Finally, much recent work has gone into designs for full bi-
section bandwidth networks. By suitably increasing the num-
bers of switches and links in the core, these designs ensure
that the network will not be the bottleneck for well-behaved
tra�c [Al-Fares , Greenberg ]. Well-behaved refers
to the hose model constraint, which requires the tra�c in-
coming to each machine to be no larger than the capacity
on its incoming network link. We note that Scarlett’s bene-
�ts remain even if networks have full bisection bandwidth,
since concurrent access of blocks results in a bottleneck at the
source machine that stores them. By providing more replicas

(as many as the predicted concurrent access), Scarlett allevi-
ates this bottleneck.

. Conclusion

Analyzing production logs fromMicroso
 Bing’s datacenters
revealed a skew in popularity of �les, making the current pol-
icy of uniform data replication sub-optimal. Machines con-
taining popular data became bottlenecks, hampering the ef-
�ciency of MapReduce jobs. We proposed Scarlett, a system
that replicates �les according to their access patterns, ageing
them with time. Using both a real deployment and extensive
simulations, we demonstrated that Scarlett’s replication im-
proved data locality in two popular MapReduce frameworks
(Dryad and Hadoop) and sped up jobs by .. Scarlett’s
guided replication used limited extra storage (less than )
and network resources ().
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